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Scott England 
 

 (ABSTRACT) 
 

Increased attention has been paid in recent years to the means in which the body 

maintains stability and the subtleties of the neurocontroller.  Variability of kinematic data has 

been used as a measure of stability but these analyses are not appropriate for quantifying stability 

of dynamic systems.  Response of biological control systems depend on both temporal and 

spatial inputs, so means of quantifying stability should account for both.  These studies utilized 

tools developed for the analysis of deterministic chaos to quantify local dynamic stability of 

musculoskeletal systems. 

The initial study aimed to answer the oft assumed conjecture that reduced gait speeds in 

people with neuromuscular impairments lead to improved stability.  Healthy subjects walked on 

a motorized treadmill at an array of speeds ranging from slow to fast while kinematic joint angle 

data were recorded.  Significant (p < 0.001) trends showed that stability monotonically decreased 

with increasing walking speeds.   

A second study was performed to investigate dynamic stability of the trunk.  Healthy 

subjects went through a variety of motions exhibiting either symmetric flexion in the sagittal 

plane or asymmetric flexion including twisting at both low and high cycle frequencies.  Faster 

cycle frequencies led to significantly (p<0.001) greater instability than slower frequencies.  

Motions that were hybrids of flexion and rotation were significantly (p<0.001) more stable than 

motions of pure rotation or flexion. 

Finding means of increasing dynamic stability may provide great understanding of the 

neurocontroller as well as decrease instances of injury related to repetitive tasks.  Future studies 

should look in greater detail at the relationships between dynamic instability and injury and 

between local dynamic stability and global dynamic stability. 
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Chapter 1 – Introduction 
 

Poor dynamic stability may contribute to musculoskeletal injuries including low back 

pain and those resulting from falls.  In spite of extensive biomechanical study falls continue to be 

a major source of injury and mortality for the elderly as well as a significant source of health care 

expenses (Hausdorff 2001).  Falls may be related to dynamic instability during functional 

walking tasks.  People suffering from peripheral neuropathy, a condition where nerves in distal 

regions atrophy, are up to 1500 % more likely to injure themselves while walking than healthy 

controls (Cavanagh 1992).  Research has suggested that people with pathologies such as 

peripheral neuropathy that affect neurocontroller function may exhibit gait patterns that differ 

from healthy controls.  These altered gait patterns may be attempts to improve stability in the 

presence of detriments to the neurocontroller caused by pathology.  Control of stability may also 

influence risk of low back pain.  Occupations that require repetitive trunk flexion have been 

reported to have high incidence rates of low back pain (NIOSH 1999; Marras 1993).  

Simultaneously, it is widely believed that instability of the spine leads to low back pain (Panjabi 

2003).  However, there are no existing measures of stability during dynamic trunk motions.  

Efforts to quantify stability during dynamic motions may then increase our knowledge of the 

behavior of the neurocontroller and aid in injury prevention and treatment of related pathologies.  

Musculoskeletal injury from falls and low back pain combine to cost the American economy 

over 120 billion dollars per year due to expenses ranging from medical bills to lost productivity 

(Englander 1996; Luo 2004).  Clearly there is a need to implement methods to quantify 

neuromuscular stability of dynamic movement. 

 Quantifying stability is an inherently difficult task as requirements for maintaining 

stability are dependent on the analyzed system.  A comprehensive definition for stability in a 

musculoskeletal system would cite it as the ability to maintain a desired trajectory despite the 

presence of small kinematic perturbations or control errors.  The ability to maintain stability 

during a dynamic task may be key to injury prevention.  Perhaps the most commonly found trait 

in pathological gait that may be an attempt to increase stability is lower average walking velocity 

when compared to healthy controls. 

Movement velocity may influence stability by several possible means.  Higher movement 

velocity leads to elevated system momentum, which requires greater neuromuscular effort for 
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control.  Increased rate of movement also reduces available time for neuromuscular reaction, 

increasing the likelihood of loss of stability.  Asymmetry of trunk flexion/extension movements 

may also influence stability as a result of modified muscle recruitment and co-contraction 

beyond the typical agonistic-antagonistic models in symmetric flexion/extension.  Therefore the 

goal of this study was to quantify dynamic stability of these musculoskeletal systems using an 

approach developed for the analysis of deterministic chaos, Lyapunov exponents.  

 

SPECIFIC AIMS 
1. Quantify effects of increased walking velocity on dynamic stability of lower extremity 

during gait.  

2. Quantify effects of cycle frequency and symmetry of motion on trunk stability. 

 

HYPOTHESES 
1. Increased walking velocity will lead to reduced dynamic stability of the lower 

extremities. 

2. Increased trunk flexion-extension cycle frequency will lead to reduced dynamic stability 

of the trunk. 

3. Asymmetric motions of the trunk will be less stable than symmetric motions. 

 

The format of this document is designed to provide detailed theoretical background on 

the measurement of stability (Chapter 2) followed by separate chapters describing studies meant 

to address each specific aim.  Chapter 3 describes the motivation, methods and results of a study 

to characterize the role of walking velocity on stability.  Chapter 4 describes the motivation, 

methods and results of a study to quantify dynamic stability of dynamic trunk movements.  

These two studies have been submitted as peer reviewed journal publications and are likewise 

presented in publication ready format. 
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Chapter 2 – Background 
 

2.1 Stability 

In the study of stability of biological systems, it is important to understand the theory 

through which measures of stability were developed.  A vital component of any discussion of 

stability is the definition of an attractor.  While they are difficult to define rigorously, it is 

generally agreed that an attractor is a minimal, invariant set to which any neighboring trajectory 

will be drawn (Strogatz 1998).  An attractor is minimal in that it may not be broken into multiple 

smaller attractors and invariant such that any trajectory on the attractor remains on the attractor 

for all time.  Examples of attractors include stable fixed points and stable limit cycles.  Limit 

cycles are isolated closed trajectories, indicative of a self-sustained oscillating system with a 

fixed amplitude.  Periodic motion of an un-damped pendulum for example is not a limit cycle 

because any alterations to its amplitude will remain for all time.  The beating of a heart at rest 

could be considered an attractor because while heart rate may increase due to stress or exertion, 

the perturbed period of the heart return to its desired rate of beating.  Existence of an attractor 

implies that the system is stable. 

Mathematically, the state  could be said to be attracting if there exists a distance δ > 0 

for which  when 

'x

( ) 'lim xtx
t

=
∞→

( ) δ<− '0 xx  (Strogatz 1998).  Any trajectory that originates within 

δ of  will eventually converge to .  When every possible trajectory converges to x’ the s

is globally attracting.  If there is a finite threshold outside which the system is not attractin

satisfying initial conditions are locally attracting.  This definition however is satisfied only based 

upon the condition that trajectories converge as time approaches infinity.  In the short term the 

trajectory may move very far from 'x .  Lyapunov stability occurs in a system when all 

trajectories remain close to  for all time.  When x’ is Lyapunov stable, there exists an ε > 0 

such that 

'x 'x ystem 

g, 

'x

( ) ε<− 'xtx  is satisfied while t > 0 and ( ) δ<− '0 xx .   Figure 2.1 shows physical 

representations of the definitions of attracting and Lyapunov stability.  A system may be 

Lyapunov stable and yet not be attracting.  An example is the harmonic oscillations of a 

pendulum.  This system would oscillate around an equilibrium point but any disturbances to its 

orbit will permanently change its amplitude.  This characteristic is termed neutrally stable.  
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When a system is both attracting and Lyapunov stable it shall be referred to as asymptotically 

stable. 

 
Figure 2.1 – Examples of attracting and Lyapunov stable fixed points, from Strogatz 1998, pp. 142 

 These descriptions of stability typically account for stability of a fixed point  in some 

state-space representing the system’s dynamics.  While these definitions are easily applied to 

static conditions, quantifying stability of dynamical systems require additional efforts.  In a 

dynamical system  varies over time.  Biological measures typically fall into this realm of 

dynamic stability.  Stability of quiet, upright postural sway for example may seem static in that a 

subject is standing still and hardly moving, but centers of mass and support are constantly 

fluctuating.  In this example the body attempts to maintain stability by positioning the center of 

support, , under the center of mass, , which moves over time.  Human gait, repeated trunk 

flexion/extensions and other repetitive tasks that are represented in state-space by roughly 

periodic orbits must be Lyapunov stable to simply exist.  However, these orbits may be 

asymptotically or neutrally stable.  While precise methods of quantifying stability may vary, 

stability analyses of biological systems always include difficulties of finite data set lengths and 

measures that merely approximate system dynamics.  Stability analysis of a dynamical system 

requires extensive knowledge of the theoretical background of stability, yet the potential benefits 

in terms of understanding biological controls are enormous. 

'x

'x

( )tx 'x
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2.1.1 Kinematic Variability 

Variability of kinematic measurements has often been used as a method of evaluating 

stability.  However, continuous biomechanical tasks such as walking and cyclic trunk 

flexion/extension movements are dynamic conditions wherein the joint control torques change 

with time and posture.  This requires that stability must be determined from measures including 

temporally and spatially dependent variability (Leipholz 1987).  The process of calculating 

standard deviations across multiple movement cycles assumes that each cycle is independent of 

every other cycle and perturbations to one cycle does not influence immediately successive 

cycles (Dingwell 1998).  Using standard deviations as a measure of stability thus ignores the 

time dependent attenuation of kinematic variability.  Variability increases at gait speeds above 

and below the preferred walking speed (Oberg 1993).  Increased variability in locomotion has 

been linked to pathology and increased risk of falls in the elderly (Hausdorff 1995, Maki 1997).  

It has been assumed that increased variability indicates decreased stability but there is little 

theoretical support for this assumption (Dingwell 2003).  Variability has been used to investigate 

kinematics, ground reaction forces, muscle activation patterns and moments at individual joints 

(Dingwell 2000).  Variability-based analyses allow investigation of various locomotive disorders 

by providing generalized comparisons to healthy controls.  However they ignore the intrinsic 

dynamical nature of gait by ignoring temporally dependent trends in variability.  These methods 

ignore the manner in which the neurocontroller maintains stability from one stride to the next 

(Dingwell 2000).  Since the neurocontroller is dependent upon spatial and temporal influences 

when controlling dynamic motion, stability analyses of dynamical systems should account for 

state- and time-varying aspects of the analyzed system.   

 

2.1.2 Inter-cycle Correlations 

Stability of dynamic systems can be approximated from nonlinear analyses of the 

system’s kinematic variability (Dingwell 2001; Buzzi 2003).  When performing a repetitive task, 

it is reasonable to assume the every movement cycle could be similar to every other cycle.  

Naturally occurring kinematic variance observed in empirical data is therefore attributed to 

mechanical disturbances or control errors.  These disturbances are attenuated in time by the 

neurocontroller and musculoskeletal system in order to maintain stable cyclic motion.  Thus, it is 

reasonable to estimate stability from the time-dependent growth or attenuation of kinematic 
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variability (Goswami 1998; Hurmuzlu 1994).  Others have quantified the magnitude of 

kinematic variability as an estimate of stability wherein increased variability was assumed to 

correspond to decreased stability (Owings 2004; Hausdorff 2001).  The magnitude of kinematic 

variability is influenced by external disturbances whereas the time-history of the movement 

following the disturbance is primarily a function of system dynamics and stabilizing 

neuromuscular control.  These correlations of kinematic measures across multiple movement 

cycles suggest that measures of stability should consider the temporal aspects of kinematic 

variability (Dingwell 2001; Hausdorff 2001).   

Long-range correlations related to the sequence of stride durations have been found in healthy 

subjects (Hausdorff 1995).  Hausdorff’s study calculated two primary scaling indices from time 

series data.  These included detrended fluctuation analysis and power spectral analysis.  These 

scaling indices were calculated in order to distinguish system dynamics among white and brown 

noise and short-term and long-term correlations.  Detrended fluctuation analysis is an adaptation 

of a traditional root-mean square analysis of a random walk.  This analysis checks for scaling 

trends in the difference between individual stride duration and average stride duration over the 

full length of data.  White noise and brown noise were the lower and upper bounds of the 

potential results from Hausdorff’s study where α is the scaling exponent found from detrended 

fluctuation analysis.  White noise (α = 0.5) represents a signal with equal power spread across its 

frequency spectrum, e.g. the frequency density, ( ) 11
0 ==

f
fS .  Brown noise (α = 1.5) represents 

a signal with power distributed according to the density function ( ) 2

1
f

fS = .  Scaling indices 

found between these boundaries represent either short or long term correlations, with the α = 0.5 

end of the spectrum corresponding to complete lack of time dependent correlations in the time 

series data and α = 1.5 indicative of a monotonic trend in stride duration.  Scaling exponents 

checked for correlations between stride durations over the full possible range of time spans.  

Scaling exponents that fell on the range of 0.5 < α  < 1.0 initially but settled onto α = 0.5 over 

larger time spans were indicative of short term correlations.  When scaling exponents were 

detected that persisted on the range of 0.5 < α  < 1.0 over large time spans, this was held as 

evidence of long term correlations in stride duration.  Detrended fluctuation analysis has 

advantages over other scaling analyses in that this method reduces the influence of noise and is 
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relatively unaffected by nonstationarities, aperiodic interruptions in the analyzed data.  Power 

spectral analysis consisted of finding the square of the amplitudes of the Fourier spectrum of the 

time series data and calculating the regression line on a logarithm scale plot of power versus 

frequency.  This approach also checks for correlations between stride duration and stride 

frequency, yet it is sensitive to noise and nonstationarities in the data.  Hausdorff’s findings that 

gait parameters exhibit sensitivity to initial conditions across many consecutive strides provides 

evidence that analysis of the neurocontroller should account for the temporal behavior of 

kinematic measures excluding pure variability as a measure of stability. 

 Other studies have quantified interstride stability based on Floquet multipliers (Hurmuzlu 

1994).  Floquet theory operates on the idea that stability of a system may be represented by 

discrete moments in successive cycles, turning an investigation of orbital stability into an 

investigation of a fixed point which is easier in theory (Strogatz 1998).  For a generalized 

example with no repeated eigenvalues, consider a point  on a closed orbit influenced by a 

small perturbation .  The perturbation vector would evolve in time and after cycles would be 

given by the equation: 

'x

0v k

( ) j

kn

j
jjk v ev ∑

−

=

=
1

1
λ      (2.1) 

where is the eigenvector of the system representative of direction of the perturbation and je jλ , 

the eigenvalue of the system, is the Floquet multiplier of the periodic orbit (Strogatz 1998).  The 

Floquet multiplier will determine the growth of the system, positive or negative, over 

consecutive cycles.  It is clear that if jλ  is greater than 1, the system is unstable because will 

grow to infinity at a geometric rate.  Conversely if 

kv

jλ  is less than 1, the system is stable and 

perturbations will be eliminated over time.  This contraction of state-space over successive 

cycles can be viewed on a Poincare map wherein  is plotted versus .  As variability 

declines, i.e. state-space contracts, the points converge to the identity line,  as seen on 

Figure 2.2. 

1+jx jx

jj xx =+1
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Figure 2.2 – A Poincare map demonstrating a stable system 

On the Poincare map of a stable system, the smaller the Floquet multiplier, the more rapidly  

will approach .  Floquet multipliers have the advantage of simultaneously analyzing the entire 

dynamics of the system being inspected and being able to definitively answer whether if the 

system is stable or unstable.  However they are calculated based on the state of the system at a 

discrete event in the orbit across successive cycles (N to N+1), thereby ignoring intra-orbit 

fluctuations.  Other studies have used analogous methods to estimate stability from Poincare 

maps, showing small kinematic errors present at the beginning of a walking step were smaller at 

the beginning of subsequent steps thereby indicating an attenuation of the kinematic disturbances 

through passive or active means (McGeer 1990; Russell 2003).  In these models walking stability 

was estimated from the contraction rate of kinematic disturbances. 

1+jx

jx

Pure variability is a poor quantifier of inter-cycle stability as it has been shown that 

control of dynamical biological systems requires temporally based analyses (Dingwell 2001; 

Hurmuzlu 1994; McGeer 1990; Russel 2003).  Kinematics of dynamic biological system are 

continuously disturbed and continual effort is required of neurocontroller to attenuate these 

perturbations.  Studies have used this attenuation of kinematic variability as a measure of 

stability (Hurmuzlu 1994; McGeer 1990; Russel 2003).  However, it provides limited insight 

regarding intra-stride effects and often ignores kinematic expansion in the time domain, e.g. 

stride-duration variance.  Effects from a kinematic disturbance can be observed over a time scale 

that influences both intra-stride and inter-stride movement (Hausdorff 2001).  Consequently, 

Lyapunov analyses can be used to track the time-history of individual disturbances recorded 

from the time-dependent kinematics (Leipholz 1987). 

 8



 

2.2  Lyapunov Analysis 

2.2.1  Lyapunov Stability  

 Stability of a dynamical system may be approximated by its reaction to kinematic 

disturbances.  A dynamical system’s sensitivity to small kinematic perturbations may be 

quantified by the system’s Lyapunov exponents (Rosenstein 1993).  One Lyapunov exponent 

exists for every dimension, n, of the analyzed trajectory.  An n-dimensional sphere of initial 

conditions on the analyzed trajectory will evolve in time into an ellipsoid with principal axes 

expanding or contracting at rates determined by that axis’ Lyapunov exponent, where n is the 

number of state variables.  They may be arranged, in order of most rapidly diverging to most 

rapidly converging, as λ1 > λ2 > … > λn.  For clarity, λ1 may be referred to as λMax as it represents 

the largest Lyapunov exponent.  Two closely oriented trajectories near an attractor will diverge 

at a rate represented by the largest Lyapunov exponent.  A helpful visualization can be realized 

by noting that the magnitude of the ith principal axis in the Lyapunov spectrum is proportional to 

e .  The volume spanned by the entire Lyapunov spectrum is then represented by 

e

( tiλ )

( )ttt nλλλ +++ L21  (Rosenstein 1993).  Rosenstein et al. concluded that when using the full Lyapunov 

spectrum a system is stable when the sum of these Lyapunov exponents is negative, i.e. the rate 

of convergence is greater than the rate of divergence.  The sum of the Lyapunov spectrum must 

be less than or equal to zero for the system to be Lyapunov stable, which must also be true for 

the existence of an attractor (Rosenstein 1993). 

The entire Lyapunov spectrum may be calculated when the equations dictating the 

dynamical system are known.  When equations are available, measuring expansion or contraction 

along the principal axes in the Lyapunov spectrum requires reorthonormalizing these vectors to 

maintain a proper phase-space orientation as the system evolves in time.  This process of 

reorthormalizing vectors guarantees that one vector occurs in the direction of most rapid 

expansion.  However, since characteristic equations are not typically available for most empirical 

systems, calculation of the full Lyapunov spectrum from experimental data is exceedingly 

difficult.  Calculation of the entire Lyapunov spectrum from empirical data requires finding the 

Jacobian matrix representative of system flow for each point on the analyzed trajectory in order 

to enable calculation of the evolution of trajectories along the Lyapunov directions. 

 9



These calculations may be simplified greatly by realizing that two randomly selected 

initial trajectories should diverge, on average, at a rate determined by the largest Lyapunov 

exponent, λMax (Rosenstein 1993).  A randomly selected vector on an attractor will be drawn to 

the most unstable manifold due to exponential growth in that direction.  This vector will 

therefore dominate expansion or contraction along any other Lyapunov direction (Rosenstein 

1993).  Initially neighboring trajectories or ‘nearest neighbors’ are two points on separates orbits 

of the attractor that have the minimum Euclidean distance between the reference point and its 

neighbor out of all the points on the attractor.  λMax may then be empirically determined from the 

divergence of nearest neighbors in a reconstructed n-dimensional state space.  Knowing this, 

λMax may then be defined by the equation: 

( ) tMAXeDtd λ
0=       (2.2) 

where is average Euclidean distance between initially neighboring trajectories at time t and 

D

( )td

0 is the initial average distance, d(0).   

 

2.2.2  Reconstructed Dynamics 

 For a system that is Lyapunov stable, calculation of λMax from experimental data first 

requires reconstructing an attractor with enough dimensions to properly capture the dynamics of 

the analyzed system.  The method of delays is a common and easily implemented method for 

reconstructing an n-dimensional state space from scalar data (Packard 1980).  The embedding 

dimension, n, is chosen as a replacement to the number of state variables in systems where the 

characteristic equations are not available and is discussed below (Section 2.2.3).  The embedding 

dimension must be large enough to allow the full dynamics of the system to be expressed in the 

n-dimensional state space.  The reconstructed state space may be expressed as a matrix where 

each row is a time-vector of a single point of data and each column is an incrementally delayed 

version of that vector.  The reconstructed attractor, X, is represented by: 

( ) ( ) ( ) ( ) ( )[ ]ddd TntxTtxTtxtxtX 1(,,2,, −+++= L     (2.3) 

where  is the original time series data and T( )tx d is the time delay.   

A clear example of the method of delays may be applied based to the Lorenz attractor.  

The Lorenz attractor is a system of three coupled nonlinear differential equations often used as a 

representation of deterministic chaos.  The Lorenz equations are as follows: 
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( )
( )
( )zxyz

yxxzy
xyx

β
ρ

σ

−=
−+−=

−=

&

&

&

      (2.3) 

where σ, ρ, and β are fixed parameters.  Figure 2.3 below shows an example of the method of 

delays as applied to a Lorenz attractor.  Figure 2.3A is the original Lorenz attractor with 

coefficients σ = 16.0, ρ = 45.92, and β = 4.0.  Figure 2.3B is reconstructed from the X 

component of the Lorenz attractor (2.3A) using the method of delays. 

 
Figure 2.3 – A traditional Lorenz attractor (A) and a Lorenz attractor reconstructed using the method of 

delays (B) 

These plots may appear dissimilar but the Embedding Theorem (Takens 1981) demonstrates that 

both curves share the same underlying dynamics, including Lyapunov exponents. 

The success of the method of delays in state-space reconstruction is sensitive to the time 

delay, Td (Rosenstein 1994).  There are several possible approaches for the calculation of Td 

which must find an optimal time delay that is neither too large nor too small.  In experiments 

with noisy finite data, a time delay that is too small will result in a phenomenon known as 

redundance while a time delay that is too large will result in irrelevance (Rosenstein 1994).  

Redundance is defined as too little information gain in the method of delays.  Delayed 

coordinates with small time delays are excessively similar to each other, which results in the 

reconstructed attractor being compressed along the identity line in the reconstructed state space.  

Irrelevance begins to occur when the time delay is larger than about half of mean period of the 

signal, thus causing delayed coordinates to become causally unrelated. 
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  No consensus exists on which method for the calculation of time delay provides optimal 

results.  Three popular methods for determining Td include; 1) time delays estimated from the 

Averag

2; 

s are 

t 

r 

entire data 

 to 

and 

sitivity to 

 

f 

e Mutual Information function (Dingwell 2000; Fraser 1986), 2) time delays estimated 

from the time it takes for the autocorrelation function to drop to a pre-specified fraction of its 

initial value (Patla 2003; Rosenstein 1993), and 3) time delays estimated using geometric 

approaches based on maximizing some component of the reconstructed state space (Buzug 199

Rosenstein 1994).  The average mutual information function finds the amount of shared 

information over time delays ranging 1 sample through the entire length of the data set.  It 

compares a value ( )tx  with )( dTtx +  for every point in the data set.  When the two value

similar, the average mutual information function reports a high value.  Td is taken as the firs

minimum of the average mutual information function (Figure 2.4), presuming that this value fo

Td will result in delayed coordinates with minimal redundancy (Dingwell 1998).  The 

autocorrelation function is similar to the average mutual information function.  However 

autocorrelation provides a measure of linear dependence on time delay, comparing the 

set to time delayed versions of itself (Figure 2.4).  The autocorrelation function is thought

work better for linear systems while average mutual information is better applied to nonlinear 

systems (Rosenstein 1994).  Figure 2.4 below shows the curves generated by autocorrelation 

average mutual information function.  Also shown in this figure are the reconstructed 

representations of a Roux attractor with optimal time delays estimated from autocorrelation and 

average mutual information.  A Roux attractor is similar to a Lorenz attractor in its sen

initial conditions however it is an example of chemical chaos.  Roux attractors prove that strange

attractors like the Lorenz attractor do occur in nature not just mathematics.  For a more thorough 

description of the nature of Roux attractors see Strogatz 1998 pages 437-440.  Time delays in 

this figure are selected as the first zero of the autocorrelation function, Td = 24.6 seconds, and the 

first minimum of the average mutual information function, Td = 108.2 seconds.  The average 

mutual information function provides a better time delay for reconstruction in this instance, as 

expected since the Roux attractor is nonlinear system.  For more information on the specifics o

calculating the average mutual information function, see Fraser and Swinney, “Independent 

coordinates for strange attractors from mutual information” (1986). 
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Figure 2.4 – Time delays selected from autocorrelation, C, and the average mutual information function, I, 

for a Roux attractor.  The attractor reconstructed with time delays from each approach are in the upper 

right corner.  Picture from Fraser and Swinney 1986, pp. 1135. 

The third method for determining Td is a geometric approach that maximizes the volume 

of the reconstructed state space.  This approach assumes that stretching the reconstructed 

attractor as far as possible leads to the best results in calculating Lyapunov exponents.  A 

maximum size of the reconstructed attractor will yield the maximum separation between 

neighboring trajectories, permitting the best possible resolution when evaluating the distance 

between nearest neighbors for calculating Lyapunov exponents (Buzug 1992).  While these 

approaches provide a good method for eliminating redundance it cannot protect against 

irrelevance.   

It is critical to determine a time delay that preserves the underlying dynamics of the 

analyzed system in state-space reconstruction.  For the data we collected, we initially attempted 

to calculate Td for each vector of time series data using the average mutual information function.  
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We found however that subtle difference in the signals may lead to drastically different values of 

Td for the same measurement between subjects and sometimes differences between right and left 

limbs within a subject.  Since the method of delays is highly sensitive to Td we chose to calculate 

Td by a combination of the average mutual information method and autocorrelation method.  

Results from both analyses were compared and Lyapunov exponents were calculated to verify 

that these inspected time delays provided acceptable approximations of λMax.  The random 

outliers of Td created by each method noticeably affected their respective λMax values.  Inspection 

of data leads us to select time delays as a constant 10 % of the period of each analyzed 

movement cycle.  Time delays corresponding to 10 % of the cycle length match closely values 

found for gait stability analysis (Dingwell in press) of 13 % and 11 % of the stride duration for 

analyzing anterior/posterior and superior/inferior motion of a sensor placed over the first thoracic 

vertebra. 

The number of dimensions utilized in a reconstructed state-space, the embedding 

dimension, n, was chosen based on a global false nearest neighbor analysis (Kennel 1993).  A 

global false nearest neighbor analysis incrementally increases n until the number of false-nearest-

neighbors approaches zero.  False nearest neighbors are defined as sets of points that are very 

close to each other at dimension n = k but not at n = k+1.  An example of a false nearest neighbor 

can be seen in Figure 2.5B.  When an addition dimension is utilized it is evident that the 

trajectory does not actually intersect itself. 

 
Figure 2.5 – Plot of x(t) = sin(2πt) + cos(πt)  with embedding dimension n=3 (A) and n=2 (B).  Note the 

False Nearest Neighbor illustrated by the intersection at [-0.25,0.25] when n=2. 
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A Global False Nearest Neighbor Analysis suggested that an embedding dimension of n = 5 was 

appropriate for all the data analyzed in this research.  Time delays for the global false nearest 

neighbor analysis were based upon the 10 % of cycle length rule discussed above. 

 

2.2.3  Estimation of Maximum Lyapunov Exponent 

Once the parameters for state space reconstruction were selected, nearest neighbors 

analyses enable time dependent tracking of kinematic variability attenuation.  The algorithm 

developed by Rosenstein et al. (1993) finds the Euclidian distance between each possible 

combination of data points in the time series data set.  Each point in the data set is assigned a 

nearest neighbor in the n-dimensional reconstructed state-space corresponding to whichever 

other point has the minimum Euclidian distance between itself and the reference point.  A 

constraint is built into this algorithm that nearest neighbors must be separated temporally by a set 

window size to guarantee that nearest neighbors occur on separate orbits of the attractor.  If 

repeated movement cycles were kinematically identical, then a plot of the trajectories would 

illustrate each cycle on top of the others in state-space.  In this condition, the distance between 

nearest neighbors, di(t), would be zero for all pairs of nearest neighbors, i.  The distance between 

all nearest neighbors is tracked forward in time to record time-dependent change in kinematic 

variability. 

The rate of change in the distance between nearest neighbors is quantified by the 

Lyapunov exponents, λMax, as shown by equation 2.2.  The algorithm from Rosenstein et al. finds 

the Euclidean distance between all pairs of nearest neighbors.  Thus, the distances can be tracked 

forward in time for all data points.  When one data point of each pair hits the final length of the 

data set and is no longer available that nearest neighbor pair is discarded.  Analyzed data sets 

must be sufficiently long to ensure that λMax may be calculated across a desired time frame 

without a significant amount of attrition of nearest neighbor pairs.  The logarithm of the 

distances between nearest neighbors are averaged at each point in time and outputted as a single 

vector of distance.  This averaging of all pairs of nearest neighbors at each point in time is key to 

enabling calculation of λMax in finite, noisy data sets.  λMax is calculated as the slope of the curve 

generated by the equation: 

( ) ( )id
t

iy jln1
∆

=       (2.4) 
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where is the sampling frequency, t∆ L  denotes the average of the contents, and  is the 

distance between the j

( )id j

th pair of nearest neighbors at time i.  λMax was calculated as the slope (via 

the least squares “polyfit” command in Matlab) of ( )iy  over the range of 0 to 1 complete cycles.  

The units of λMax would be represented in terms of measured units (typically degrees for joint 

angles) per cycle.  To convert these units to distance per second, λMax was divided by average 

cycle time for each subject at each velocity condition.  Figure 2.6 below shows the calculation of 

λMax for the Lorenz attractor Figure 2.3A. 

 
Figure 2.6 – Divergence and λMax for a Lorenz attractor 

In calculating the time dependent attenuation of kinematic variability, greater knowledge may be 

gained into the behavior of the neurocontroller over traditional variability-based stability 

assumptions.   

 After the stability of the analyzed systems has been investigated, further insight into the 

neurocontroller may be investigated by manipulating the signal being analyzed.  By normalizing 

the length of each movement cycle, temporal variability may be removed, enabling detailed 

inspection of how the neurocontroller compensates for spatial differences between cycles 

without being influenced by changes in cycle time.  Specific sections of movement cycles may 

be cut out of larger signals for in depth analysis of key moments in the movement cycle.  The 

signals being investigated by Lyapunov analysis may be altered in many ways so long as the 

modifications are applied uniformly to every cycle in the repetitive task. 
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2.3 Empirical Measurement of System Dynamics 

2.3.1 Gait Study Data Collection 

Time series analysis on human gait requires data that accurately describes gait dynamics  

across many consecutive strides.  Human gait has been described by stride length, stride 

duration, and double support time but these fail to capture the dynamical nature of gait.  Motion 

of a sensor placed on the trunk has been used to capture the complexity of the entire body’s 

dynamics due to the complex nonlinear coupling between body segments (Dingwell in press).  

To permit comparisons of stability between various joints prominent in actuating gait, we 

calculated joint angles for the right and left hip, knee, and ankle.  Lower-body kinematic data 

were recorded from 21 reflective markers using a 6-camera, 3-D, video motion analysis system 

(Vicon, Oxford Metrics).  Markers were placed on the sacrum, and symmetrically across the 

sagittal plane on the anterior superior iliac spine (ASIS), posterior superior iliac spine (PSIS), 

anterior thigh, lateral epicondyle of the femur, anterior shin, lateral malleolus of the fibula, 

dorsum of the foot, 5th metatarsal, calcaneous and hallux.  Joint angles were calculated based on 

the definition of a dot product: 

θcosBABA =•
→→

      (2.5) 

where  and 
→

A
→

B are vectors defining limbs and θ is the bounded joint angle.  Limb vectors for 

the foot, leg, thigh, and trunk are defined as the vector between the lateral malleolus and 5th 

metatarsal, lateral malleolus and lateral epicondyle of the femur, lateral epicondyle of the femur 

and hip joint center (HJC), and posterior superior iliac spine and anterior superior iliac spine.  

The HJC was calculated based on anthropometrics to find the center of rotation of the hip with 

respect to nearby markers.  The HJCs were determined from the equations provided by Vicon 

(Oxford Metrics) for use in their Golem model: 

( ) FSCHJCx += θsin      (2.6) 

( ) ( ) ( )ββθ cos)(sincos dDCHJCy +−=     (2.7) 

( ) ( ) ( )ββθ sin)(coscos dDCHJCz +−=      (2.8) 

where S is dependent on the side of the body, 1 for right, -1 for left, F is half of the distance 

between the right and left ASIS, θ is fixed at 28.4 degrees, β is set at 18 degrees, d is the marker 

radius, 14.5 mm, and C and D are given by equations 2.8 and 2.9 repectively. 

( ) 0153.0115.0 −= LC      (2.9) 
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( ) 04856.01288.0 −= LD       (2.10) 

In equations 2.8 and 2.9, L is the average leg length, the sum of the distance between the ASIS 

and lateral epicondyle of the femur and the lateral epicondyl of the femur and the lateral 

malleolus.  The coordinates of the HJC are rotated with the pelvis and added to coordinate 

corresponding to the front of the pelvis determined as the midpoint of the line segment between 

the right and left ASIS. 

 To properly scale walking velocity to leg length, subjects walked as set percentages of 

their Froude Velocity, VF.  VF is derived by looking at gait as a simple inverted pendulum.  A 

free body diagram of this inverted pendulum model may be seen in Figure 2.7 below.   

 
Figure 2.7 – Free body diagram of the inverted pendulum model  

The maximum theoretically possible walking velocity occurs at the velocity at which upward 

centripetal force equally balances weight.  Based on this scenario, VF is calculated so that weight 

is counteracted by vertical force due to radial acceleration. 

R
Vmmg F

2

=       (2.11) 

Solving for VF gives the equation for normalizing velocity to a subject. 

gRVF =               (2.12) 

Froude velocity was originally derived as a scaling factor to calculate the dynamic similarity of 

full size ships with more manageable models however it has found applications in a widespread 

array of investigations into locomotion (Vaughan 2005).  VF has been used as a scaling factor to 

enable comparisons of human gait with geometrically similar gait patterns in animals and robots 

(Alexander 1984).  VF also may be applied to check for dynamic similarities between humans of 
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different sizes and ages (Vaughan 2003).  VF even helps explain the difficulties that astronauts 

faced in trying to walk on the Moon at gait velocities comfortable to humans on Earth (Minetti 

1998; Cavagna 2000).  Other studies analyzing gait at varying velocities have used percentages 

of preferred walking speed (PWS) as the independent variable.  Typical preferred walking speed 

occurs at approximately 0.45 % VF and analyzed walking speeds typically spanned 60 % - 140 % 

PWS, which corresponds approximately to 30 % - 60 % VF (Dingwell in press).  This range of 

walking speeds may be more common during healthy walking than velocities at 20 % and 80 % 

VF however they fail to inspect the response of the neurocontroller to velocities above and below 

this relatively comfortable zone. 

 

2.3.2 Back Study Data Collection 

To the best of the author’s knowledge, time series analysis of kinematic data detailing 

cyclic motions of the trunk has never been attempted.  Studies have shown that injuries often 

occur during repetitive lifting tasks (NIOSH, 1999; Marras 1993).  The goal of this study was to 

investigate dynamic stability of the trunk as influenced by speed and symmetry.  Magnetic 

sensors reporting position and rotation were placed on the palm of the right hand, manubrium of 

the sternum, tenth thoracic and first sacral vertebrae.  Originally it was hoped to compare 

stability of the trunk markers to stability of the palm marker to investigate any possible 

compensatory behavior in which the trajectory of the hands may possibly be more stable than 

any trunk motions in the presence of increased speed or asymmetry. 

Participating subjects performed motions corresponding to pure flexion pure twist, and 

asymmetric flexions which included twists to the right for one trial, left for another.  Subjects 

were asked to touch targets with their hands; hands together, fingers intertwined.  Targets were 

placed at pre-specified locations similar to methods described by Thomas (2003).  An upper 

target was placed at shoulder height in the anterior sagittal midline such that it could be 

contacted while standing upright with arms outstretched parallel to the ground.  A lower target 

was placed in the sagittal midline 50 cm anterior to the knee.  Subjects were asked to touch the 

upper target followed by the lower target sequentially with contact occurring at the beats of the 

metronome for the duration of each experimental trial.  Asymmetric trials were recorded wherein 

the upper target was moved to one side and the lower target to the opposing side as to induce an 

approximately 450 axial rotation of the torso at the upper and lower targets.  Positions of the 
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upper and lower targets were mirrored about the sagittal plane in another trial and results 

averaged to avoid any influence of dominant sides of the subject’s body. 

A metronome was used to dictate the pace at which subjects moved for slow and fast 

trials.  The full cycle of motion took 2 full beats of the metronome to complete.  For fast trials 

the metronome was set to 80 beats per minute (40 cycles per minute) while slow trials took place 

at 40 beats per minute (20 cycles per minute).  Subjects were given time to practice these 

movements until they were comfortable with the movement trajectory and movement pace.  

Once comfortable with the motions, position and rotation data of the magnetic sensors were 

recorded for 30 consecutive trials.  Subjects were given two minutes rest between data 

collections to minimize fatigue influence on results.  The order of motions was randomized to 

avoid any influence from potentially remaining effects of fatigue or learned-behavior.   

Angle data of each magnetic sensor was reported as euler angle rotations about the Z, Y’, 

X’’ axes.  The Z axis corresponds to positive vertical direction with rotations about this axis 

equating to twisting of the trunk.  The Y’ axis is collinear with the vector pointing laterally to the 

subject’s right side after being rotated around the Z axis.  Rotations about this axis equate to 

trunk flexion/extension and are the primary concern of this section of study.  The X’’ axis points 

anteriorly out of the trunk.  There were no significant motions about this axis in this study. 

While data was collected on 30 healthy subjects, equipment problems nullified results of 

10 subjects.  For Lyapunov analysis, rotational data must be represented as continuous data.  Due 

to some unknown error during data collection, discontinuities were present and irreparable in the 

trunk flexion/extension data for 10 subjects.  This may potentially be prevented in future studies 

by either more carefully selecting which axes are being rotated about or by using 3-D video 

motion analysis in place of electromagnetic motion sensors. 
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Abstract: 

 The focus of this study was to examine the role of walking velocity in stability during 

normal gait.  Local dynamic stability was quantified through the use of maximum finite-time 

Lyapunov exponents, λMax.  These quantify the rate of attenuation of neighboring kinematic 

trajectories of joint angle data recorded as subjects walked on a motorized treadmill at 20, 40, 60, 

and 80 percent of the Froude Velocity.  A monotonic trend between λMax and walking velocity 

was observed with increased λMax at faster walking velocities.  This trend was evident whether 

temporal variability remained or was removed from the data.  This suggests that slower walking 

velocities lead to increases in stability.  These results may reveal more detailed information on 

the behavior of the neuro-controller than variability based analyses alone. 
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3.1  Introduction 

Stability is a critical component of walking 8;13.  It can be defined as the ability to 

maintain functional locomotion despite the presence of small kinematic disturbances or control 

errors.  Stability of standing static postures is often recorded from kinematic variability 

associated with the center-of-pressure under the equilibrium base of support.  However, walking 

is a dynamic condition wherein the joint control torques change with time and posture thereby 

requiring that stability must be determined from state- and time-dependent variability14.  In other 

words, stability of walking requires analyses that account for both time and movement.  

Kinematics of walking and associated variability are influenced by walking velocity thereby 

indicating potential velocity effects on stability 15;18.  Some studies suggest that one possible 

motivation for slower walking speed in the elderly and in individuals with joint disease and 

neuropathology is to improve stability4.  This assumes that stability of walking is improved at 

slower velocities.  The purpose of this study was to test this assumption. 

Stability of dynamic systems can be estimated from nonlinear analyses of kinematic 

variability3.  Others have quantified the magnitude of kinematic variability as an estimate of 

stability wherein increased variability was assumed to correspond to decreased stability 10;25.  

However, measurements of kinematic variability are subtly different than stability.  It is 

reasonable to assume that every walking stride could be similar to every other stride.  Natural 

kinematic variance observed in empirical data is therefore attributed to mechanical disturbances 

or control errors.  These disturbances are attenuated in time by the neuro-controller and 

musculoskeletal system in order to maintain a stable walking pattern.  Thus, it is reasonable to 

estimate stability from the time-dependent expansion or attenuation of kinematic variability 8;13.  

The magnitude of kinematic variability is influenced by external disturbances whereas the time-

history of the movement following the disturbance is primarily a function of stabilizing 

neuromuscular control. 

Techniques for quantifying dynamic stability were largely developed from biomechanical 

models of bipedal gait.  Miura and Shimoyama implemented a bipedal model of gait with an 

open-loop control scheme using “joint torque schedules” that were executed at predetermined 

time events in the gait cycle17.  Their gait was unstable and would fail without active feedback 

corrections necessary to attenuate movement errors and perpetuate motion.  McGeer 
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demonstrated that a stable, periodic motion can be achieved by a passive, knee-less model 

walking down a slope16.  After several steps the simulation settled into a steady-state walking 

pattern matched to the slope of the hill.  Stability was estimated by Poincare maps to demonstrate 

that small kinematic errors introduced at the beginning of a step were attenuated when measured 

in subsequent steps.  A similar model by Russell et al 23 implemented an active feedback 

controller to attenuate kinematic errors so as to achieve stable bipedal walking on level ground.  

In these models walking stability was estimated from the contraction rate of kinematic 

disturbances.  The rate of kinematic error attenuation can also been used as an empirical measure 

of stability in human gait12. 

Stability of human walking can be estimated from temporal analyses of multi-

dimensional variability.  Disturbance to the walking trajectory is an ongoing process so the 

attenuation of kinematic variability is continually manifest.  Poincare maps quantify the 

attenuation of kinematic variability between consecutive strides13.  This method has the 

advantage of measuring stability in a multi-degree-of-freedom system.  However, it provides 

limited insight regarding intra-stride effects and often ignores expansion in temporal variability, 

e.g. stride-duration variance.  Effects from a kinematic disturbance can be observed over a time 

scale that influences both intra-stride and inter-stride movement10.  Dynamic analyses can be 

used to track the time-history of individual disturbances recorded from the time-dependent 

kinematics14.  The time-dependent rate of kinematic expansion is measured by the Lyapunov 

exponent, λ.  One Lyapunov exponent exists for every movement dimension of the analyzed 

kinematic trajectory.  These can be arranged, in order of most rapidly diverging to most rapidly 

converging, as λ1 > λ2 > … > λn.  To avoid confusion, λ1 may be referred to as λMax to represent 

the largest Lyapunov exponent.  Rosenstein et al. concluded that when using the full Lyapunov 

spectrum, a system is stable when the sum of these Lyapunov exponents is negative, i.e. the rate 

of convergence is greater than the rate of divergence21.  Calculation of the full Lyapunov 

spectrum from experimental data however, is exceedingly difficult.  These calculations may be 

simplified greatly by realizing that two randomly selected initial trajectories should diverge, on 

average, at a rate determined by the largest Lyapunov exponent, λMax.  Calculation of λMax is 

relatively easy and can be used to evaluate the influence of walking velocity on dynamic stability 

of walking. 
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The goal of this study was to 1) implement Lyapunov analyses to characterize stability of 

dynamic steady-state walking, and 2) test whether walking velocity influences stability of 

walking.  This is the first in a series of studies planned to quantify the stability of gait in normal-

developing subjects and patients with developmental neuro-impairment. 
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3.2  Methods 

3.2.1 Experimental Procedures. 

Kinematic data were recorded from 19 healthy adult subjects including 6 male and 13 

females; mean age (± standard deviation) 22.5 ± 2.8 yr; mean height 1.7 ± 0.1 m and mean 

weight 65.7 ± 12.7 kg.  Lower-body kinematic data were recorded from 21 reflective markers 

using a 6-camera, 3-D, video motion analysis system (Vicon, Oxford Metrics).  Markers were 

placed on the sacrum, anterior superior iliac spine, posterior superior iliac spine, anterior thigh, 

lateral epicondyle of the femur, anterior shin, lateral malleolus of the fibula, dorsum of the foot, 

5th metatarsal, calcaneous and hallux.  Subjects walked barefoot on a treadmill at 20, 40, 60 and 

80 percent of their Froude velocity, VF.  Walking velocity was expressed in terms of Froude 

velocity to appropriately scale the walking speed to leg length and pendulum dynamics24.  Each 

subject’s Froude Velocity was calculated based on the equation: 

gRVF ∗=       (3.1) 

where R is the distance between the greater trochanter and lateral malleolus of the fibula and g is 

the acceleration due to gravity.  Comfortable walking speed is typically 0.45 VF and running is 

initiated at 1.0 VF.   

Four repeated collections of 30 walking strides per velocity condition were recorded for 

each subject.  Ankle, knee and hip angles were calculated from the 3-D locations of the marker 

set using standard techniques (MATLAB, Mathworks, Inc., Natick, MA).  Analyses were limited 

to the plantarflexion / dorsiflexion dimension of the ankle, knee flexion angle and hip flexion 

angle.  Previous studies recommend against filtering the data before Lyapunov analyses so as to 

retain spatio-temporal fluctuations and nonlinearities6.  However, we believe that kinematic 

signals at frequencies greater than 10 Hz are unlikely related to the musculoskeletal motion and 

therefore filtered the data with a 10 Hz, low-pass 2nd-order Butterworth filter.  Regardless of this 

difference in opinion regarding filtering the results were similar between these studies.   

Since cadence changes with walking velocity but data sampling frequency remained 

fixed, a dilemma arises with respect to the proper way to compare data collected at different 

walking velocities.  Specifically, since stride-duration decreases with walking velocity, data 

collected at 80% VF would likely have less than half as many data points per stride, on average, 
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as data collected at 20% VF.  Data were time-normalized in two separate manners and results 

compared.  First, every stride was time-normalized to 100 data points per stride.  This provides 

an equal number of data points per stride regardless of velocity but it removes stride-to-stride 

temporal variations that are an important component of Lyapunov stability analyses.  Second, 

data sets of 30 contiguous strides were re-sampled to be 3000 data points long, i.e. approximately 

100 data points per stride on average but any individual stride could be greater than or less than 

100 data points.  This permits stride-to-stride temporal variation while normalizing the data such 

that the average number of data points per stride were similar for each velocity condition.  In an 

attempt to understand the influence of re-sampling frequency on the Lyapunov analysis, the same 

data were also analyzed with data re-sampled to 1500 data points.  Independent stability analyses 

were performed on each time-dependent joint angle, xj(t), where j=1:6 was the joint number and t 

was the re-sampled time interval.   

3.2.2 Calculating Dynamic Stability.   

Local dynamic stability was determined based on the maximum finite-time Lyapunov 

exponent, λMax.  These were used to quantify the exponential attenuation of variability between 

neighboring kinematic trajectories.  The approach assumes that every stride could be identical to 

every other stride.  Stride-to-stride differences in kinematic measurements are attributed to small 

perturbations.  Therefore, kinematic variability can be used to evaluate the stability of the system 

by tracking the progression of a perturbed gait cycle back to the mean.  Since the recorded time-

series data, xj(t), are one dimensional column vectors of joint angles it was necessary to 

reconstruct an n-dimensional state-space out of the kinematic data in order to accurately 

determine dynamic perturbations to the ideal gait cycle.  One typical method of creating an n-

dimensional state-space from scalar data is by method of delays.  Using this method a joint angle 

in n-dimensional space would appear as: 

        Yj(t) = [xj(t), xj(t+Td), xj(t+2Td). . . xj(t+(n-1)Td)]             (3.2) 

where xj(t) is the original scalar data of joint angle and Td is a constant time delay.  A 

reconstructed state-space Yj(t) with an embedding dimension of n = 3 can be seen in Figure 

3.1A. 
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Figure 3.1.  (A) Reconstructed state-space kinematics of knee angle with 3 embedded dimensions.  (B) 

Divergence of nearest neighbors with temporal variability permitted 

The success of state-space reconstruction by the method of delays is sensitive to the time 

delay, Td
22.  Several methods exist for calculation of Td.  There is no consensus on which method 

provides optimal results.  Three methods have been popularized including; 1) time delays 

estimated from the Average Mutual Information function 4;7, 2) time delays estimated from the 

time it takes for the autocorrelation function to drop to a pre-specified fraction of its initial 

value19, and 3) time delays estimated using geometric approaches based on maximizing some 

component of the reconstructed state space 2;22.  Using the Average Mutual Information function 

and the autocorrelation approach, we observed time-delay estimates ranging from 9 to 40 

samples.  To assure that all of the trials were analyzed similarly, a constant Td of 10 samples (10 

percent of the length of the gait cycle) was used for all reconstructed state space.   

The number of state-space dimensions, n in equation 1, is selected based on a Global 

False-Nearest-Neighbor Analysis21.  This method incrementally increases n until the number of 

false-nearest-neighbors approaches zero.  False nearest neighbors are defined as sets of points 
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that are very close to each other at dimension n = k but not at n = k+1.  For example, a plot of 

x(t) = sin(2πt) + cos(πt) with n = 3 embedding dimensions in Figure 3.2A illustrates that the 

curve does not intersect itself.  When this same data is viewed in two-dimensions, n = 2, it 

artificially appears to cross-over itself, i.e. a false nearest neighbor would occur at the crossover 

point as in Figure 3.2B.   

 

Figure 3.2.  Plot of x(t) = sin(2πt) + cos(πt)  with embedding dimension n=3 (A) and n=2 (B).  Note the 

False Nearest Neighbor illustrated by the intersection at [-0.25,0.25] when n=2. 

A Global False Nearest Neighbor Analysis suggested that an embedding dimension of n = 5 was 

appropriate for the analyzed data. 

Maximum finite-time Lyapunov exponents were calculated based on the algorithm 

published by Rosenstein et al21.  The Euclidean distance between nearest neighbors, di(t), was 

computed for each data-point, i, in the reconstructed state-space Yj(t) for all time, t.  Nearest 

neighbors are found by selecting data points from separate cycles that are closest to each other in 

reconstructed state-space.  If repeated strides were kinematically identical, then a plot of the 

trajectories would illustrate each cycle on top of the others in state-space.  In this condition, the 

distance between nearest neighbors, di(t), would be zero for all pairs of nearest neighbors, i.  

However, in the empirically measured data the distance between nearest neighbors, di(t), was 
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greater than zero as in Figure 3.1A.  Hence, there are clearly kinematic disturbances observable 

in the data.  The distance between all nearest neighbors was tracked forward in time to record 

time-dependent changes in kinematic variability as in Figure 3.1B.  The rate of change in the 

distance between nearest neighbors is quantified by the Lyapunov exponents, λ,  

( ) teDtd λ
0=       (3.3) 

where D0 is the average displacement between trajectories at t = 0.  Two randomly selected 

initial trajectories should diverge, on average, at a rate determined by the largest Lyapunov 

exponent, λMax 
21.  Therefore, the maximum Lyapunov exponent, λMax was approximated from 

the experimental joint-angle data as the slope of the linear best-fit line to the curve created by the 

equation: 

( ) ( )kd
t

ky iln1
∆

=           (3.4) 

where ( )kdiln  represents the average logarithm of displacement for all pairs of nearest 

neighbors, i.  The maximum finite-time Lyapunov exponent, λMax, was calculated as the slope of 

the logarithm of the average divergence across the span of 0 to 1 strides as shown in Figure 3.3. 

 

Figure 3.3.  Average logarithmic divergence vs time.  The slope of the logarithmic relation from 0 to 1 

stride represents λMax. 
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A value of λMax was computed for each joint of every subject at each walking velocity.  λMax was 

interpreted as a measure of dynamic stability.   

Statistical analyses were performed to determine the effects of walking velocity on 

stability.  Lyapunov exponents were computed independently for the ankle, knee and hip for 

each subject and each walking velocity, VF = 20, 40, 60, 80%.  Preliminary analyses revealed no 

statistically significant differences in stability between the right and left limbs.  Therefore, data 

from the right and left limbs were pooled for statistical analyses.  Two-factor repeated measures 

analysis of variance (ANOVA) tested the within-subject effects of joint and walking velocity on 

λMax.  Analyses were performed using commercial software (Statistica, 4.5 Statsoft, Inc., Tulsa 

OK) using a significance level of α < 0.05. 
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3.3  Results 

When the full 30 stride data sets at each velocity were re-sampled to be 3000 data points 

in duration, variability in stride-duration was observed despite walking at constant velocity.  

Mean and standard deviations of stride time were 1.57±0.062 seconds at 20% VF, and 

1.12±0.021, 0.94±0.012, and 0.79±0.016 seconds for 40, 60, and 80% VF respectively.  This 

stride-time variability was significantly higher (p<0.001) at 20% VF than at 40, 60, and 80% VF.   

Maximum finite-time Lyapunov exponents, λMax, were calculated for each subject and 

velocity condition to estimate dynamic stability of walking.  There was a significant main effect 

of joint on the stability value (p<0.001) illustrated in Figure 3.4.   

Figure 3.4.  Average λMax increased with walking velocity.  This trend was observed when data were re-

sampled to 3000 samples per 30 strides (A) and similarly when temporal variability was removed by re-

sampling the data to 100 samples per stride (B) 

Mean value of λMax was 1.08 ± 0.35 mm/sec for the ankle, 1.40 ± 0.37 mm/sec for the knee, and 

1.27 ± 0.34 mm/sec for the hip.  Post-hoc analyses demonstrated that λMax for the ankle was 

significantly (p<0.001) less than in the hip and knee.  λMax for the hip was in turn significantly 

(p<0.01) less than in the knee.  Recall that smaller values of λMax suggest greater stability thereby 

indicating greater neuromuscular stabilizing control in the ankle joint than measured in the hip 

and knee. 

 35



Stability was significantly (p<0.001) influenced by the main effect of walking velocity.  

This effect was similarly observed whether stride-duration variability was maintained by time-

normalizing at 3000 points per 30 strides, or whether stride-duration variability was eliminated 

by time-normalizing to exactly 100 points per stride.  λMax at each velocity was significantly 

different than at every other velocity and monotonically increased with increasing velocity.  

Regression analyses were performed to analyze for trends related to velocity.  A best-fit trendline 

with linear and quadratic terms was developed for each set of data for comparison with similar 

methods by others6.  Results suggest the λMax values for the ankle were linearly related to 

walking velocity, but the stability of the knee dynamics were significantly correlated with a 

quadratic behavior of walking velocity as in Table 3.1. 

Table 3.1.  Regression analysis results comparing λMax with walking velocity.  Two of the three 

measurements were linearly related to velocity when stride-duration variability was removed (100 

samples per stride).  Two of the three measurements were related in a quadratic manner to walking 

velocity when stride-duration variability was retained (3000 samples per 30 strides). 

Data Samples Joint Regression Equation R2 Linear Quadratic

Ankle  λMax = 12.2-5 x2 +  2.9-3 x + 0.372 0.898 p = 0.397 p = 0.001 

Knee  λMax =   3.1-5 x2 +  1.2-3 x + 0.444 0.876 p = 0.002 p = 0.418 
100 samples 

per stride 
Hip  λMax =   4.1-5 x2 + 10.5-3 x + 0.460 0.864 p = 0.008 p = 0.287 

Ankle  λMax = 19.8-5 x2 –   5.2-3 x + 0.748 0.912 p = 0.089 p = 0.001 

Knee  λMax =   5.7-5 x2 +   9.5-3 x + 0.759 0.868 p = 0.015 p = 0.136 
3000 samples 

per 30 strides 
Hip  λMax =   9.5-5 x2 +   4.5-3 x + 0.755 0.852 p = 0.240 p = 0.013 

Data re-sampled to 3000 data points per 30 strides were compared to data re-sampled to 1500 

data points per 30.  Halving the effective sampling frequency caused a significant (p<0.001) 

reduced λMax. 
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3.4  Discussion 

It has been suggested that individuals with impaired neuromuscular control may walk 

with reduced velocity in order to improve their stability4.  Existing evidence reveals that 

kinematic and spatio-temporal variability are influenced by walking velocity18.  However, 

stability might be poorly represented by the magnitude of variability5.  Instead, assessment of 

stability may require examination of how the neuro-control system handles kinematic variability, 

i.e. the active and passive control of disturbances.  Therefore, the goal of the current study was to 

determine the relationship between walking velocity and the Lyapunov exponent that represents 

the time-dependent change in joint angle variability.  Dingwell and Martin6 recently reported 

results from a similar study to investigate the influence of walking velocity on stability .  They 

observed that kinematic variability demonstrated a quadratic behavior, i.e. variability was least 

near the comfortable walking velocity but it was increased at both slow and fast walking 

velocities.  Conversely, their analyses suggest that stability increased linearly with walking 

velocity.  Our analyses agree with this monotonic trend the relation was not necessarily linear.  

Lyapunov analyses revealed that stability was significantly influenced by walking 

velocity.  When the data from every stride were time-normalized to 100 data points per stride, a 

linear relationship was observed between λMax and velocity.  Smaller λMax represents a more 

stable system.  Therefore, every joint was significantly more stable lower velocities.  These 

results agree with the conclusions of Dingwell and Martin6 despite differences in measurement 

techniques and processing.  However, this method of time-normalizing the data artificially 

removes stride-to-stride temporal variations.  A kinematic disturbance can influence not only the 

movement pattern but it can also influence the time duration of the movement trajectory.  To 

accommodate stride-duration variability separate analyses were performed wherein the data from 

30 strides were time-normalized to 3000 data points in total.  This process causes a mean stride-

duration of 100 points per cycle but all strides were not necessarily of equal length.  In fact, 

results demonstrate mean stride-to-stride variation of 2.3 percent.  Using this time-normalizing 

procedure walking velocity continued to significantly influence the Lyapunov exponent, λMax, 

i.e. monotonic trend of lower stability at faster walking velocities.  Unlike the analyses with 

exactly 100 points per stride, the temporal variation introduces a more quadratic trend.   
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Fast walking velocity may influence dynamic stability by a combination of several 

mechanisms.  Walking velocity affects kinematic double-support time, step width and other 

clinical correlates of stable walking1.  Modified support mechanics may influence the ability to 

control movement disturbances.  Analyses of bipedal walking demonstrate the existence of a 

biomechanical resonance associated the pendulum-like behavior of the skeletal structure and 

muscle stiffness11.  These may contribute to stability at the preferred walking velocity16.  

Therefore, walking at velocities that are faster or slower than this resonant frequency require 

greater active neuromuscular control to maintain stable periodic movement20.  In other words, 

faster walking velocities increase the segmental momentum thereby requiring greater effort from 

the neuro-controller to attenuate kinematic disturbances.  Short stride durations limit the 

allowable time for neuromuscular corrections to compensate for mechanical disturbances or 

controller errors.  Slow walking velocities require active control that is out-of-phase with 

movement to slow the natural dynamics of the passive system.  Hence, most of the variability 

observed during slow walking velocities appeared to be attributable to fluctuations in stride 

duration whereas during fast walking the variability was primarily associated with kinematic 

disturbances.  This suggests that these subjects may be temporally less stable at slower walking 

velocities than at fast walking velocities but spatially more stable at slow velocities.  

Nonetheless, results suggest that the neuro-control system more effectively controlled kinematic 

disturbances at slow velocities than during fast walking.  

Data processing and analyses techniques must be considered when interpreting the 

results.  Rosenstein et al21 observed that Lyapunov analyses are sensitive to the sampling 

frequency and length of the data set.  If the sampling frequency is sufficient to characterize the 

kinematic variance then the length of the data set is more critical than sampling frequency.  In 

the measured data, mean stride duration at 80% VF was 0.79 ± 0.03 seconds whereas at 20% VF 

it was 1.57 ± 0.11 seconds.  If one were to use a common sampling rate for all velocities, then 

the length of the data set at fast walking velocities would include approximately half the number 

of data samples per stride when compared to slow walking velocities.  The only other study that 

directly compared walking velocity to dynamic stability compared three minutes of gait data 

collected between 60 % and 140 % of a subject’s preferred walking speed6.  In that study, a fast 

trial may potentially have more than twice as many strides with half as many data points per 

stride compared to a slow walking trial, i.e. greater sample density at slow velocities than at fast 
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velocities.  To investigate the effect of halving the number of data samples per stride, we 

compared results from data that were re-sampled at approximately 100 samples per stride, i.e. 

3000 samples per 30 strides, versus results from the same walking trials that were re-sampling at 

approximately 50 samples per stride, 1500 samples per 30 strides.  Note that both re-sample rates 

retained the stride-to-stride temporal variation of the original kinematic data.  Results 

demonstrated that the number of samples per stride may influence the values of λMax.  Shorter 

data set lengths reduced the mean value of λMax by 17.2%.  This illustrates that stability estimates 

can be influenced by data set length.  Thus, when comparing the stability of different walking 

velocities it is necessary to account for the effects of data sampling rate and differences in data 

set lengths.  To avoid artifacts from sample density we recommend that stability analyses should 

normalized the time scale so that there are an approximately equivalent number data points at 

fast walking velocity as at slow velocities. 

Several experimental and analytical limitations should be addressed in future research.  

First, the maximum finite-time Lyapunov exponent, λMax, represents the greatest rate of 

divergence in the kinematic data.  Clearly, if the disturbances were to continue to expand at these 

rates the error would grow until failure.  Simultaneous with expansion in the dimension 

represented by λMax, there are other dimensions wherein errors are attenuated at a rate 

represented by the remaining λ coefficients.  To fully characterize the stability of the walking 

process the full set of Lyapunov exponents should be investigated.  In a previous study of 

walking dynamics, the stability of walking was determined from a sensor placed over the first 

thoracic vertebrae6.  In that study, it was concluded that analyzing a single component on the 

thorax would represent the complex coupling of individual segment movement from the lower 

limbs.  However, we observed significant stability differences in individual joints thereby 

indicating that the risk of failure may be related to specific joints.  The relation between these 

individual components and the overall stability should be investigated in future studies.  The 

analyses were based upon an assumption that every walking stride could be similar to every 

other stride such that kinematic variance can be attributed to mechanical disturbances or control 

errors.  However, stable chaotic gait patterns are possible 9 wherein there is no single movement 

trajectory and kinematic variability is a component of the natural system dynamics even in the 

absence of disturbances.  The extent of chaotic dynamics in human walking is unclear, but the 

interpretation of the Lyapunov exponents is valid in both chaotic and non-chaotic periodic 
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movements.  The results may also be influenced by the fact that data were collected while 

subjects walked on treadmill.  Due to the spatial constraints of the video motion capture system; 

a treadmill was necessary to enable collection of kinematic data across many sequential strides.  

Studies have shown that a treadmill may reduce kinematic variability and increase dynamic 

stability of gait measures5.   Finally, our results were limited to healthy adults.  The influence of 

neuromuscular impairment may modify not only the stability of walking 12 but the relation 

between walking velocity and stability.   

In conclusion, dynamic stability of walking is influenced by walking velocity with 

different contributions from the ankle, knee and hip joints.  Analyses of clinical outcomes often 

demonstrate improved walking velocity following interventions indicating possible 

improvements in stability1.  We recommend that clinical assessments should be expanded where 

possible to investigate whether 1) patients with neuromuscular impairment have abnormal 

stability and 2) whether conventional treatments successfully improve the stability of walking 

performance.  These dynamic stability analyses may provide improved insight into 

neuromuscular control of dynamic locomotion. 
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Structured Abstract: 

Study Design:  Nonlinear systems analyses of trunk kinematics were performed to estimate 

control of dynamic stability during repetitive flexion and extension movements.   

Objective:  Determine whether movement pace and movement direction of dynamic trunk 

flexion and extension influence control of local dynamic stability.    

Summary of Background Data:  Spinal stability has been previously characterized in static but 

not in dynamic movements.  Biomechanical models make inferences about static spinal stability 

but existing analyses provide limited insight into stability of dynamic movement.  Stability 

during dynamic movements can be estimated from Lyapunov analyses of empirical data.   

Methods:  Twenty healthy subjects performed repetitive trunk flexion and extension movements 

at 20 and 40 cycles per minute.  Maximum Lyapunov exponents describing the expansion of the 

kinematic state-space were calculated from the measured trunk kinematics to estimate stability of 

the dynamic system.  

Results:  Complexity of torso movement dynamics required at least five embedded dimensions.  

This suggests that stability components of lumbar lordosis may be empirically measurable in 

addition to global stability of trunk dynamics.  Repeated trajectories from fast paced movements 

diverged more quickly than slower movement indicating that local dynamic stability is limited in 

fast movements.  Movements in the mid-sagittal plane demonstrated greater multi-dimensional 

kinematic divergence than asymmetric movements. 

Conclusion:  Nonlinear dynamical systems analyses were successfully applied to empirically 

measured data.  These were used to characterize the neuromuscular control of stability during 

repetitive dynamic trunk movements.  Movement pace and movement direction influenced the 

control of spinal stability.  These stability assessment techniques are recommended for improved 

workplace design and clinical assessment of spinal stability in patients with low-back pain. 

 

 

Key Words:  Stability, Dynamics, Neuromuscular control. 

 45



 

Key Points:  

1. Nonlinear dynamic systems analyses can be used to quantify neuromuscular control of 

spinal stability of repetitive dynamic torso flexion movements. 

2. Lyapunov exponents from measured trunk kinematics demonstrate that stability declines 

with rate of flexion - extension movement and is influenced by movement asymmetry. 

3. Embedding dimensions greater than expected demonstrate that the movement dynamics 

in the trunk are more complex than previously considered.  
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Mini-Abstract: 

Nonlinear dynamical systems analyses were successfully applied to empirically measured data to 

characterize the spinal stability during repetitive dynamic trunk movements.  Movement pace 

and movement direction influenced stability.  These assessment techniques can be applied for 

improved workplace design and clinical assessment of spinal stability in patients with low-back 

pain. 
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4.1 Introduction 

Neuromuscular control of spinal stability has been characterized in static but not in 

dynamic movement tasks.  Stability is defined as the ability to maintain intervertebral and global 

torso equilibrium despite the presence of small mechanical disturbances and/or small 

neuromuscular control errors.  Research indicates that three sub-systems contribute to spinal 

stability 1.  One is the passive contributions from the spinal ligaments, discs and bone; the second 

is the steady-state active muscle recruitment contribution to spinal stability; the third is the neural 

feedback system that includes active and voluntary responses.  Biomechanical models describe 

how factors including muscle recruitment, spinal posture, and external load contribute to the 

potential energy of the musculoskeletal system 2-4.  This is important because static stability is 

achieved when the equilibrium posture of the spine is also a state of minimum potential energy 5.  

Although these models have been applied to data collected during movement tasks 6;7 they ignore 

the role of kinetic energy.  Therefore, when investigating the stability of dynamic movements 

existing models are limited by two factors.  First, existing models do not yet account for the 

energy of movement dynamics.  Second, they ignore the role of the time-dependent dynamic 

neural feedback for the control of spinal stability.  Empirical estimates of stability are an 

alternative to biomechanical modeling and may contribute valuable insight regarding control of 

spinal stability during dynamic movement tasks.   

Stability can be estimated from the time-dependent behavior of kinematic variance.  

Empirical estimates of torso stability have been recorded while subjects maintained stead-state 

seated balance on a wobbly chair 8.  The equilibrium state during that study was a zero-velocity, 

upright seated posture.  However, small biomechanical or neuromotor disturbances continuously 

perturb the system causing kinematic variance.  Consequently, torso posture and velocity were 

rarely identical to the equilibrium state 9.  The neuromuscular controller maintains stability 

posture by actively working to return the disturbed posture toward the equilibrium state 10.  

Hence, stability can be observed when the measured kinematics appear to be attracted toward the 

posture of static equilibrium 11.  A similar approach can be applied to record stabilizing control 

of dynamic movements.   
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During repetitive dynamic trunk flexion-extension movements it is reasonable to assume 

that the kinematics of each cycle could be similar to every other cycle 12, i.e. the target trajectory.  

Kinematic variance about this target trajectory is the manifestation of stochastic disturbances and 

control errors during the movement process.  At any given time the multi-dimensional kinematic 

variance can be represented as an n-dimensional sphere where the volume of the sphere describes 

the magnitude of the kinematic dispersion and n is the number of state variables 13.  Measurable 

state variables include the trunk angles and velocities in each recorded dimension.  

Neuromuscular response to the kinematic perturbations will cause the movement dynamics to be 

attracted toward the target trajectory.  Therefore, as time, t, progresses the n-dimensional sphere 

of kinematic variance evolves into an ellipsoid whose principle axes contract (or expand) at rates 

described by Lyapunov exponents 14.  One Lyapunov exponent exists for every movement 

dimension.  These can be arranged in order of most rapidly expanding to most rapidly 

contracting, λ1 > λ2 > … > λn.  A system is stable when the sum of these exponents is negative, 

i.e. the rate of contraction is greater than the rate of expansion.  Note that it is necessary to 

quantify the time-dependent behavior of kinematic variability when investigating stability.  

However, calculation of the full Lyapunov spectrum from experimental data is exceedingly 

difficult.  These calculations may be simplified greatly by realizing that two randomly selected 

initial trajectories should diverge, on average, at a rate determined by the largest Lyapunov 

exponent, λMax 
14.  Calculation of λMax is relatively easy and can be used to investigate the role of 

movement dynamics in neuromuscular control of spinal stability. 

The goal of this study was to implement Lyapunov analyses to assess stabilizing control 

during dynamic trunk movement.  These analyses were used to test whether movement rate and 

direction affect stability.  Epidemiologic data suggests that the risk of low-back injury is related 

to the dynamic movement rate during repetitive trunk flexion tasks 15;16.  Therefore, we 

hypothesized that during repetitive trunk flexion-extension movement, dynamic stability may 

decrease with an increased pace of cyclic movement.  Existing evidence further suggests that the 

risk of low-back injury is increased when trunk movements include non-sagittal movement 

components 17.  Thus, we also hypothesized that movements in the mid-sagittal plane may be 

more stable than asymmetric movement trajectories, i.e. movements that include components in 

both the sagittal and transverse planes. 
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4.2 Methods 

4.2.1 Experimental Procedures. 

Twenty subjects performed repetitive dynamic trunk flexion and extension movements.  

Subjects included 8 males and 12 females with no self-reported history of LBP (Table 4.1). 
Table 4.1.  Subject demographics and anthropometry. 

  SUBJECTS Male Female 

Number 8 12 

Age (yrs)   23.8 (2.3)   21.5(2.6) 

Height (cm) * 183.5 (3.8) 164.5 (5.3) 

Body Mass (kg) *   83.9(12.8)   61.2 (7.5) 

* indicates significant difference between genders. 

Participants provided informed consent approved by the Virginia Tech institutional review board 

prior to participation in the study.   

The experiment required subjects to perform continuously repeated trunk flexion and 

extension movements (Figure 4.1).   
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Figure 4.1.  Experimental setup and schematic of the targeted movement task 

They were required to touch targets with their hands held together.  Targets were located at pre-

specified locations similar to methods described by Thomas 18.  One target was placed at 

shoulder height in the anterior sagittal midline so that the target could be reached when standing 

upright with the arms horizontally extended.  A second target was placed in the sagittal midline 

50 cm anterior to the knee.  Subjects were required to touch the upper target followed by the 

lower target and continuously repeat this motion throughout the duration of each experimental 

trial.  Asymmetric trials were recorded wherein the upper target was moved to the right and the 

lower target to the left so as to induce a nominal 450 axial rotation of the torso at the upper and 
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lower targets.  Movements during these trials thereby included torso flexion and left twist.  

Separate trials were conducted wherein the targets were placed so as to require flexion and right 

twist.  Each target was touched synchronous with a periodic tone from a metronome in order to 

establish the movement pace, 20 and 40 cycles per minute.  To assure 30 movement cycles per 

trial the slow paced trials were 90 seconds in duration while the fast paced trials were 45 seconds 

in duration.  Although all movement cycles of each trial were recorded only the middle 15 cycles 

were analyzed to assure steady-state movement behavior.  Subjects were allowed to practice the 

movements until they were comfortable with the movement trajectory and movement pace 

before data collection of each trial.  Experimental conditions were presented in randomized order 

with at least two minutes rest between trials.   

Upper-body kinematic data were recorded from electromagnetic motion sensors that were 

secured by double-sided tape over the vertebral processes of the T10 and S1 (Ascension 

Technology Corp., Burlington, VT).  Trunk angles were computed by means of 3-D Euler 

rotation matrices recorded from the T10 sensor with respect to the S1 sensor at a sample rate of 

100 Hz.  Following data collection, the kinematic data were filtered with a 10 Hz, low-pass, 2nd-

order Butterworth filter in preparation for calculation of dynamic stability.  The number of data 

samples per cycle can influence the estimate of stability 19.  Therefore, the data were re-sampled 

in software to obtain 4500 data samples per 15 movement cycles.  Note that this provides a mean 

value of 300 samples per cycle on average but cycle-to-cycle variability in movement duration 

was retained.  Expansion of kinematic variability in one dimension may be compensated by 

contraction in another dimension.  Thus, stability analyses were performed on the Euclidean 

norm, i.e. square root of the sum of squares, of the three trunk angles recorded at each time 

interval. 

4.2.2 Calculating Dynamic Stability.   

Local dynamic stability of the trunk flexion-extension movement was computed from the 

maximum finite-time Lyapunov exponent, λMax.  Complex dynamical systems must be 

represented with greater number of dimensions than simple systems.  However, the recorded data 

were one-dimensional, time-series, column vectors, x(t), representing the Euclidean norm of the 

trunk angles.  One typical method of creating an n-dimensional state-space from scalar data is by 

method of delays, 
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 Y(t) = [x(t), x(t+Td), x(t+2Td). . . x(t+(n-1)Td)] (1) 

where x(t) is the original scalar data of trunk movement, n is the number of reconstruction 

dimensions and Td is a constant time delay (Figure 4.2).   
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Figure 4.2.  Example of a reconstructed movement trajectory with n=3 state-space dimensions.  Although 

the movement data were analyzed with n=5, three embedding dimension is the largest that can be 

illustrated. 

This embeds information related to finite-difference estimation of velocity, acceleration, etc.  

Several methods exist for calculation of the reconstruction delay, Td.  These include time delays 

estimated from the Average Mutual Information function 20,  the time it takes for the 

autocorrelation function to drop to a pre-specified fraction of its initial value 21, and time delays 

that maximize the space filled by the n-dimensional reconstructed signal 19.  There is no 

consensus on which method provides optimal results.  To ensure that all of the trials were 

analyzed similarly, a constant Td of 30 samples (10 percent of the length of the average cycle) 

was used for all trials based upon autocorrelation assessment described above.  The number of 

reconstruction dimensions was determined from a Global False Nearest Neighbors analyses 14 
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and revealed that an embedding dimension of n = 5 was appropriate for the analyzed data.  False 

nearest neighbors are defined as sets of points that are very close to each other at dimension n = 

k but not at n = k+1.  This method incrementally increases n until the number of false-nearest-

neighbors approaches zero. 

Maximum finite-time Lyapunov exponents were calculated from the distance, di(t), 

between nearest neighbors in the reconstructed state-space, Y(t).  Nearest neighbors were found 

by selecting data points from separate cycles that are closest to each other in the reconstructed 

state-space (Figure 4.2).  If repeated movement cycles were kinematically identical, then an 

illustration of the trajectories would plot each cycle on top of the others.  In this condition, the 

distance between nearest neighbors, di(t), would be zero for all pairs of nearest neighbors, i.  

However, in the empirically measured data the distance between nearest neighbors, di(t), was 

greater than zero.  Hence, there are clearly kinematic disturbances and/or chaotic behaviors 

observable in the data.  The distance between all nearest neighbors was tracked forward in time, 

t.  Since the growth in the least stable dimension quickly dominates expansion of the n-

dimensional sphere of kinematic variance, randomly selected initial trajectories should diverge, 

on average, at a rate determined by the largest Lyapunov exponent, λMax 
14.  Therefore, the 

maximum Lyapunov exponent, λMax was approximated as the slope of the linear best-fit line 

created by the equation, 

( ) ( )td
t

ty iln1
∆

=           (2) 

where ( )tdiln  represents the average logarithm of displacement, di(t), for all pairs of nearest 

neighbors, i, throughout a time-span, t=0 to t=1 cycles (Figure 4.3).   
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Figure 4.3 – Typical plot of the state-space expansion with time, ( ) ( )td
t

ty iln1
∆

= .  The dashed line 

represents the best-fit line between t=0:1 cycles (with a cycle length of approximately 1.5 seconds for this 

trial).  The slope of the best-fit line was used to represent the state-space expansion, i.e. local dynamic 

stability of the task 

Stability is thereby calculated as λMax, which is the rate of divergence of initially neighboring 

trajectories. 

Statistical analyses were performed to determine the effect of movement pace and 

asymmetry on the neuromuscular control of dynamic stability.  Preliminary analyses revealed no 

significant differences in λMax during asymmetric right-to-left versus left-to-right trials for the 

number of subjects studies, (p=.437, F=0.617).  Therefore, data from the two asymmetric 

conditions were pooled for statistical analyses.  Independent variables of movement pace (slow, 

fast) and asymmetry (mid-sagittal, asymmetric) were treated as within-subject effects in a two-

factor repeated measures analysis of variance (ANOVA).  Analyses were performed using 

commercial software (Statsoft, Inc., Tulsa OK) using a significance level of α < 0.05. 
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4.3 Results 

Maximum finite-time Lyapunov exponents, λMax, were calculated to estimate the 

neuromuscular control of stability during repeated dynamic trunk flexion-extension movements 

(Figure 4.4).  A significant main effect for movement pace (p<0.001, F[1,19]=929.9) was 

observed.  Mean (standard deviation) values during repetitive trunk movement at 20 cycles per 

minute were λMax = 0.397 (0.062) whereas when while moving at 40 cycles per minute λMax = 

0.846 (0.098).  Recall that larger values of λMax represent more rapidly diverging dynamics and 

are considered less stable.  Results suggest the value of the λMax during the fast trials were more 

than twice the level recorded during slow dynamic movement.  However, it would be incorrect to 

infer from this that the slow movement was twice as stable unless the complete Lyapunov 

spectrum were computed.  Nonetheless, it can be concluded that the neuromuscular control of 

dynamic stability declined significantly with increased movement rate. 

A significant main effect for movement asymmetry was observed (p<.001, F[1,19]=28.5).  

Sagittally symmetric movements were associated with greater λMax than asymmetric trials, 0.665 

(0.256) and 0.579 (0.218) respectively.  A pace-by-asymmetry interaction (p<0.018, 

F[1,19]=6.69) revealed that the difference between slow and fast conditions was attenuated in the 

asymmetric movement (Figure 4.4).   
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Figure 4.4 – λMax values were greater during fast paced movement trials than slow paced cyclic 

movement.  Values were also greater during asymmetric movement tasks than during sagittal mid-plane 

movements.  Larger values of λMax represent less stable movement dynamics. 
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Nonetheless, the difference between slow and fast movements was statistically significant 

(p<0.001) in both symmetric and asymmetric movement conditions.   
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4.4 Discussion 

Musculoskeletal low-back injuries are often associated with dynamic trunk flexion 15.  

Studies demonstrate that movement velocity influences torso muscle recruitment and co-

contraction thereby contributing to greater spinal load during fast paced lifting movements than 

during slow movements 22.  It is unclear why co-contraction might be increased during fast 

movement.  However, static 23;24 and quasi-static 25 analyses of lifting exertions suggest that co-

contraction may be recruited, in part, to augment spinal stability.  Reduced spinal stability 

combined with increased spinal compression may contribute to the risk associated with dynamic 

trunk flexion.  Although spinal stability has been estimated in static conditions 4, we are unaware 

of any previous studies to quantify the neuromuscular control of stability during dynamic trunk 

movements.  Therefore the goal of this study was to determine whether the rate of movement 

influences stability during dynamic trunk flexion and extension tasks 

Neuromuscular control of stability declined with movement pace.  Several factors may 

contribute this behavior.  First, momentum increases with movement velocity thereby requiring 

greater neuromuscular effort to control and attenuate kinematic disturbances.  Second, torso 

muscle activity and co-contraction increase with trunk velocity and acceleration 26;27.  

Modulation of muscle forces when muscle activity is high requires the recruitment of large motor 

units thereby limiting fine-motor control during fast paced movements.  Finally, fast dynamic 

movements reduce the allowable time for neuromuscular corrections.  This suggests increased 

delay in the active recruitment and neural feedback relative to the movement trajectory.  

Feedback delay is well recognized as a destabilizing factor in control systems 28.  Fitt’s law of 

motor control 29 suggests that greater kinematic errors may be expected when movement pace is 

fast.  Therefore, it is not surprising that neuro-control of dynamic stability was compromised 

during the fast dynamic movement tasks. 

Movements in the mid-sagittal plane were less stable than when moving in a combined 

sagittal and twist trajectory.  This contradicted our second hypothesis but may not be surprising 

when one considers the neuromuscular control of these tasks.  Published surface EMG 

measurements suggest greater recruitment and coactivation of the internal and external oblique 

muscle groups during asymmetric tasks 30;31.  This recruitment is necessary to control the 

asymmetric tasks whereas activation of these muscles is less critical when moving in the mid-
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sagittal plane.  Todorov 32 demonstrated that an optimal movement strategy may allow variability 

in redundant, task-irrelevant dimensions, e.g. kinematic variability in the transverse plane during 

mid-sagittal movement.  When constraints were imposed by requiring simultaneous movement in 

both the sagittal and transverse planes, increased control was required as documented by smaller 

values of λMax.  Further research is necessary to investigate how asymmetric trajectories 

influence the control of dynamic movement.  Specifically, the asymmetric movement in our 

protocol resulted in movements that crossed the mid-sagittal plane, i.e. each movement included 

rotation from left twist to right twist postures and vice versa.  Moreover, the movement tasks did 

not require handling of an external load.  Representation of epidemiologic results should 

investigate stability when the movement is confined to the left half-plane or right half-plane and 

with a load in the hands.  Nonetheless, results demonstrate that neuromuscular control patterns 

associated with asymmetric movement trajectories significantly influences dynamic stability. 

Understanding the meaning of the λMax coefficient is important when interpreting the 

results.  During static postural tasks the neuromuscular response to a kinematic perturbation will 

cause the system to return toward the equilibrium state 10.  Likewise, during dynamic torso 

flexion and extension tasks the stabilizing neuromuscular control system will cause the 

movement dynamics to be attracted toward the target movement trajectory.  Recall that the 

existence of an attractor trajectory represents a globally stable system is guaranteed when the 

sum of the complete spectrum of Lyapunov exponents is negative, i.e. the rate of kinematic error 

contraction is greater than the rate of expansion.  Clearly, in our study the torso was stable for all 

experimental conditions because there were no unbounded movements or injuries.  Therefore, we 

conclude that the sum of exponents was negative.  However, the goal of the study was to 

determine whether specific dynamic movement conditions were more or less stable than others.  

The maximum Lyapunov exponent, λMax, characterizes the maximum time-rate of expansion for 

the n-dimensional sphere that describes kinematic variability.  In other words, this value 

represents the least stable aspect of the movement dynamics 14.  Consequently, it was logical to 

investigate the maximum Lyapunov exponent, λMax, because it provides insight into the dynamic 

behavior of the musculoskeletal system and it is mathematically feasible to estimate this 

coefficient from empirical data.  We hope to pursue further studies that will attempt to estimate 

the full Lyapunov spectrum in order to provide greater insight into the neuromuscular control of 

the spine.  Moreover, future studies should investigate the nature of the maximum Lyapunov 
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exponent, λMax, in individual subjects.  It represents local instability in a particular direction 

thereby providing potential insight into the weakest control direction.  It may be useful to 

identify which kinematic dimensions are well controlled and which are poorly controlled in 

individual patients for optimized prophylactic intervention or for design of individual-specific 

injury rehabilitation. 

An additional interesting result was the reconstruction dimension n=5.  The 

reconstruction dimension provides insight into the complexity of the neuromuscular dynamics.  

Recall that the kinematics were represented as a one-dimensional Euclidean norm vector of the 

trunk angles.  Nonetheless, analyses revealed that the data must include at least 5 reconstructed 

dimensions to adequately represent the dynamic system.  We would not have been surprised with 

n=3 when one recognizes that the trunk moved in 3-dimensions.  A value of at least n=3 is 

predicted by Taken’s theorem 33.  However, the requirement of larger values, n=5, suggest that 

multi-dimensional spinal curvature may have contributed to the results.  This may indicate that 

the analyses were sensitive to effects from spinal lordosis movement in addition to the global 

trunk dynamics.  Previous studies indicate that neuromuscular deficits in patients with low-back 

pain are revealed most effectively in complex dynamical tasks 34.  Whether the complexity of 

neuromuscular control changes with movement task design and whether it is related to injury and 

efficacy of rehabilitation should be investigated in future research. 

In conclusion, nonlinear dynamical systems analyses were applied to empirically 

recorded repetitive dynamic trunk movements.  These analyses characterize the neuromuscular 

control of stability during dynamic movements.  Results demonstrate that both movement pace 

and movement asymmetry influence the control of spinal stability.  Continued development of 

these stability assessment techniques are recommended for improved workplace design and 

clinical assessment of spinal stability in patients with low-back pain. 
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CONCLUSIONS 
 

 Local dynamic stability of the lower extremities during gait and the trunk during dynamic 

flexion/extension motions were evaluated in this study.  Results demonstrated that dynamic 

stability is influenced by movement pace and symmetry, with reduced velocity and the presence 

of asymmetry corresponding to more stable systems.  Dynamic stability of several 

musculoskeletal systems was successfully quantified in this study by means of maximum 

Lyapunov exponent, λMax.  Lyaponov exponents accurately measured the divergence of 

kinematic trajectories describing the dynamics of the body during gait and trunk 

flexion/extension motions.  Lyapunov analysis provided insight into the roles various parameters 

play in maintaining dynamic Lyapunov stability of the body.  However, they leave the question 

unanswered as to whether the body is neutrally or asymptotically stable while undergoing these 

dynamic motions. 

 Neuromuscular control of stability was impaired by increased movement velocity.  There 

are several possible factors which may be responsible for this trend.  Momentum of the analyzed 

body segments increases with movement velocity thereby requiring greater neuromuscular effort 

to control and reduce disturbances to the desired trajectory.  Additionally, increased body 

segment velocity can be linked to increased muscle activity and co-contraction in the associated 

body segment.  During periods of high muscle activity, control of muscle forces necessitates the 

recruitment of large motor units thereby restricting fine-motor control during fast paced 

movements.  Fast movements also reduce the available time for neuromuscular corrections to 

errors in the desired trajectory.  This corresponds to increased delay in the active recruitment and 

neural feedback relative to the movement trajectory.  Feedback delay is widely accepted as a 

destabilizing influence on control systems.  Therefore, it is not surprising that neuro-control of 

dynamic stability was deteriorated during the rapid movement tasks, however most previous 

research on the influence of velocity on stability centered around kinematic variability as a 

measure of stability. 

 Stability was also influenced by symmetry of motion of the trunk.  It was observed that 

asymmetric motions increased stability, contradicting our initial hypothesis.  The may however 

be attributable to increased muscle activity in asymmetric motion.  Recruitment of more muscle 

sets may assist in further constraining the motion and attenuating kinematic variability.  Now 
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that controlling factors of musculoskeletal stability have been identified, further research is 

appropriate to analyze the relationship between stability and injury.  Identifying risk of injury 

and possible solutions may lead to great gains in injury prevention as well as greater 

understanding of neuromuscular control of the human body. 
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Appendix B – Subject Consent Form  
 

Title of Project:   Musculoskeletal Biomechanics of Movement and Control 
Investigators:   S.A. England, K.P. Granata 
 
Purpose of this Research 
To understand musculoskeletal injury and improve clinical diagnoses of injury it is necessary to understand 
how muscles control force and movement.  The purpose of this study is to measure the relation between 
human movement, force generation and muscle activity.  We are also interested in observing how gender, 
fatigue and physical conditioning influence these parameters.  Throughout the course of this project more than 
200 subject volunteers will participate including healthy individuals from the age of 18 to 55. 
Procedures 
We will tape adhesive markers and sensors on your skin around your trunk, legs and arms.  These sensors 
are EMG electrodes that measure the activity of your muscles and position sensors to measure how you 
move.   After some preliminary warm up stretches, we may ask you to push and/or pull as hard as you can 
against a resistance.  We may then ask you to hold or lift a weight or weighted-box and to bend forward 
and back.  We may also ask you to do some fatiguing exertions such as holding or lifting a heavy weight 
or pushing/pulling against a bar or cable for several minutes.  We may also apply a quick but small force 
to record reflexes.  You may be requested to return for repeated testing.  Between test sessions you may 
be asked to participate in specified physical conditioning as per the American College of Sports Medicine 
recommended guidelines 
Risks 
The risks of this study are minor.  They include a potential skin irritation to the adhesives used in the tape 
and electrode markers.  You may also feel some temporary muscle soreness such as might occur after 
exercising.  Subjects participating in physical conditioning may experience muscle soreness and/or 
musculoskeletal injury associated with inherent risks of cardiovascular, strength training and therapeutic 
exercise.  To minimize these risks you will be asked to warm-up before the tasks and tell us if you are 
aware of any history of skin-reaction to tape, history of musculoskeletal injury, cardiovascular limitations.   
Benefits 
By participating in this study, you will help to increase our understanding musculoskeletal control of 
movement and musculoskeletal injury mechanisms.  We hope to make this research experience interesting 
and enjoyable for you where you may learn experimental procedures in biomechanical sciences.  We do 
not guarantee or promise that you will receive any of these benefits and no promise of benefits has been 
made to encourage your participation. 
Anonymity and Confidentiality 
Experimental data collected from your participation will be coded and matched to this consent form so only 
members of the research team can determine your identity.   Your identity will not be divulged to 
unauthorized people or agencies.  Digital video recorded during the experimental trials will be used to track 
the movement of the sensors by means of computer analyses and is insufficient video quality to observe 
individual participant identifying characteristics.  Secondary VHS-style video may be recorded to validate 
the digital motion data.  This camera angle is placed to avoid facial or other identifying characteristics.  
Sometimes it is necessary for an investigator to break confidentiality if a significant health or safety concern 
is perceived or the participant is believed to be a threat to himself/herself or others. 
Compensation 
Participants required to return for multiple test sessions or participate in physical conditioning for this 
protocol will receive payment per the number of test sessions as well as a bonus for full completion of the 
multi-session research protocol.  Subjects participating in experiments as part of course or laboratory 
procedures will receive appropriate credit for analysis of specified data as described in the course syllabus 
but not for personal performance during the experimental session.  If course credit is involved and the 
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subject chooses not to participate alternative means for earning equivalent credit will be established with 
the course instructor. 
 
Freedom to Withdraw 
You are free to withdraw from a study at any time without penalty. If you choose to withdraw, you will be 
compensated for the portion of the time of the study (if financial compensation is involved). If you choose 
to withdraw, you will not be penalized by reduction in points or grade in a course (if course credit is 
involved). You are free not to answer any questions or respond to experimental situations that they choose 
without penalty.  
There may be circumstances under which the investigator may determine that you should not continue as 
a subject.  You will be compensated for the portion of the project completed. 
 
Approval of Research 
This research project has been approved, as required, by the Institutional Review Board for Research 
Involving Human Subjects at Virginia Polytechnic Institute and State University, by the Department of 
Engineering science and Mechanics.  
   21 January 2003                                   20 January 2004 
IRB Approval Date    Approval Expiration Date 

 
Subject's Responsibilities 

I voluntarily agree to participate in this study. I have the following responsibilities: 
- Inform the investigators of all medical conditions that may influence performance or risk 
- Comply to the best of my ability with the experimental and safety instructions  
- Inform the investigator of any physical and mental discomfort resulting from the experimental 

protocol  
 
Subject's Permission 
I have read and understand the Informed Consent and conditions of this project.  I have had all my 
questions answered.  I hereby acknowledge the above and give my voluntary consent:  
Subject Name (Print):  
Subject signature:   
Date  
  Date   
Witness (Optional except for certain classes of subjects) 
   
Should I have any pertinent questions about this research or its conduct, and research subjects' rights, and 
whom to contact in the event of a research-related injury to the subject, I may contact: 
 
Investigator(s):    Scott England  E-mail:  scenglan@vt.edu  Phone  231-2022 
Faculty Advisor:    K.P. Granata   E-mail:  Granata@vt.edu  Phone  231-7039 
 
_______________________________________ ________________________ 
     Departmental Reviewer/Department Head           Telephone/e-mail 
 

David M. Moore      
Chair, IRB       
Office of Research Compliance   
Research & Graduate Studies   
 

Subjects must be given a complete copy (or duplicate original) of the signed Informed Consent 
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Appendix C – Lyapunov Analysis Flowchart 
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Appendix D – λMax data 

 

λMax for ankles resampled to 3000 data points per 30 strides 
Subject 
# %Vf 
  20 40 60 80

205 0.7272183 1.0138974 1.1786728 1.7539433
207 0.6194175 0.7526825 1.0053446 1.5097501
209 0.599869 0.904352 1.0498849 1.7879275
210 0.6607085 0.9259156 1.2544687 1.818659
211 0.682159 0.9725583 1.1551931 1.7251992
213 0.7336615 0.8810039 1.1471708 1.7065829
214 0.6443746 0.8052548 1.1310564 1.5533956
215 0.7894467 0.9497256 1.0816004 1.5535721
216 0.7639953 0.9692452 1.2022564 1.5814725
217 0.8368418 0.6179801 1.0449138 1.4478857
218 0.7002333 0.8132258 0.9991141 1.5564771
219 0.8580868 0.9393106 0.995016 1.3935454
220 0.5948015 0.7656096 1.1680128 1.7191033
221 0.686555 0.917076 1.1863157 1.8304287
222 0.5820105 0.89601 1.1221981 1.5225625
223 0.771598 0.9309176 1.1736197 1.5523031
226 0.741326 0.9263708 0.9407499 1.3489811
227 0.6664139 0.9096483 1.1721028 1.6064042
228 0.8141734 1.0365659 1.2528386 1.5803072
230 0.7825194 0.8835441 1.062318 1.6537451
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λMax for knees resampled to 3000 data points per 30 strides 
Subject # %Vf 
  20 40 60 80

205 0.9651904 1.2783802 1.4501147 1.8881418
207 0.78979 0.9620883 1.3599951 1.7252096
209 0.8717667 1.3382975 1.462948 2.0865829
210 0.8785253 1.1052421 1.6173815 2.2693948
211 0.889055 1.4124682 1.6801606 1.957183
213 1.0058941 1.3806194 1.5654837 1.987908
214 0.8900763 1.3631159 1.5782188 1.7333028
215 1.1411236 1.3393685 1.4472828 1.8773767
216 1.021053 1.3512778 1.5956023 2.0787755
217 1.1918704 1.2087436 1.4396625 2.0003602
218 0.8024942 0.9756334 1.2938068 1.8373584
219 1.2584254 1.4060288 1.466235 1.787581
220 0.8690033 1.1625216 1.4854137 1.9998255
221 0.969137 1.3519517 1.5918245 1.992432
222 0.7669467 1.178156 1.4661155 1.7956166
223 1.1598148 1.2599851 1.5955009 1.7941447
226 0.9081709 1.2904294 1.3422061 1.6040248
227 0.8264286 1.2557386 1.5474214 1.7385146
228 1.0416086 1.2603774 1.6178144 1.7367113
230 1.0041196 1.2888003 1.5153168 1.9671134
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λMax for hips resampled to 3000 data points per 30 strides 
Subject # %Vf 
  20 40 60 80

205 0.8942184 1.1722291 1.5068881 1.8126258
207 0.7626155 1.0650085 1.2365581 1.6076463
209 0.8526064 1.1599922 1.2713452 1.8965133
210 0.8535659 1.0101229 1.4148689 2.0739299
211 0.7838367 1.2055431 1.2903145 1.7591777
213 0.9078785 1.1568494 1.4689672 1.9414758
214 0.8295539 1.1953499 1.342654 1.5985992
215 0.9988124 1.0318077 1.1948822 1.6530321
216 0.9554976 1.2080241 1.3877934 1.7708222
217 1.0019511 1.0078785 1.1791474 1.5314347
218 0.710377 1.0012662 1.1701982 1.5821891
219 0.8971009 1.0669167 1.2155769 1.539061
220 0.7586089 0.985901 1.2649605 1.7470436
221 0.8700415 1.2241099 1.4400262 1.8566561
222 0.7513254 1.046303 1.3867024 1.7145873
223 1.0673593 0.996227 1.3698668 1.5912867
226 0.8575313 1.0981833 1.1032222 1.4504377
227 0.770337 1.127669 1.3529747 1.7924709
228 1.0141993 1.1172814 1.3362281 1.6549216
230 0.9384074 1.1178607 1.2155163 1.9723528
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λMax for ankles resampled to 100 data points per stride 
Subject 
# %Vf 
  20 40 60 80

205 0.441268 0.868685 1.286087 1.5772286
207 0.517633 0.650025 0.789835 1.4687265
209 0.37648 0.802083 0.935563 1.5787204
210 0.440533 0.79281 0.929057 1.4187245
211 0.361963 0.642549 0.869402 1.4563632
213 0.411888 0.716682 1.000886 1.4142037
214 0.424966 0.660418 0.910784 1.2974267
215 0.47909 0.961083 0.980472 1.4705333
216 0.37137 0.744987 0.935163 1.321089
217 0.571159 0.624844 0.816812 1.3189111
219 0.618195 0.778896 0.965 1.2603224
220 0.361866 0.596397 0.915918 1.4113743
221 0.565602 0.796329 1.106256 1.6516474
222 0.50012 0.770259 0.900941 1.3214158
223 0.529535 0.673029 0.897483 1.2255145
226 0.279199 0.606199 0.883472 1.1547386
227 0.465686 0.688489 0.95141 1.2936087
228 0.447136 0.789906 1.118557 1.5166509
230 0.675844 0.572584 0.770501 1.4142864
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λMax for knees resampled to 100 data points per stride 
Subject 
# %Vf 
  20 40 60 80

205 0.580017 0.976207 1.275308 1.6124859
207 0.580401 0.869369 1.238341 1.6478659
209 0.481718 0.982194 1.171419 1.7862783
210 0.700607 1.042624 1.299356 1.6374883
211 0.429824 0.977794 1.269316 1.7737152
213 0.589105 1.055047 1.247406 1.6695475
214 0.469116 0.956624 1.263116 1.464137
215 0.759443 1.261862 1.236345 1.8795827
216 0.769286 1.08287 1.400548 1.6516032
217 0.666498 0.978483 1.209575 1.7055222
219 1.033769 1.007655 1.330005 1.6768347
220 0.70253 0.988711 1.295652 1.6890282
221 0.897103 1.1675 1.317126 1.8363906
222 0.581433 1.029663 1.215386 1.5631541
223 0.923885 0.995438 1.333548 1.5267543
226 0.381167 0.729183 1.1746 1.3801386
227 0.860983 1.096793 1.251255 1.5215983
228 0.896408 1.115314 1.461113 1.574671
230 0.961892 1.013949 1.35776 1.7640122
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λMax for hips resampled to 100 data points per stride 
Subject 
# %Vf 
  20 40 60 80

205 0.596143 1.071965 1.329241 1.6988252
207 0.577811 1.071287 1.103974 1.656148
209 0.545674 0.975793 1.110919 1.696237
210 0.662566 1.024456 1.324594 1.6463916
211 0.419134 0.96174 1.166601 1.7186243
213 0.66342 1.015113 1.250236 1.8703532
214 0.555193 1.044924 1.214417 1.523984
215 0.692705 1.096549 1.11546 1.684426
216 0.636975 0.999981 1.256628 1.3894201
217 0.68111 0.793855 1.085009 1.5016656
219 0.760756 0.928371 1.203178 1.4740793
220 0.655127 0.925993 1.192676 1.5051636
221 0.85973 1.100223 1.301555 1.6369732
222 0.624817 1.036993 1.263845 1.5742542
223 0.856444 0.790643 1.23349 1.2911064
226 0.432169 0.822996 1.012592 1.1937469
227 0.793038 1.000624 1.115586 1.6434488
228 0.805905 1.163555 1.216111 1.4445458
230 0.940899 0.976313 1.150618 1.7713317
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λmax for trunk flexion angle 
 SLOW FAST   
Subject # V DR DL V DR DL G 

101 0.634769 0.455467 0.355948 0.949935 0.667897 0.728056 1 
102 0.559131 0.332169 0.413618 1.012453 0.815209 0.721242 1 
103 0.563844 0.387742 0.449469 0.903053 0.669139 0.7718 1 
104 0.604321 0.361682 0.422168 0.82885 0.840707 0.739775 1 
105 0.571801 0.371755 0.439271 0.978776 0.78189 0.663175 1 
106 0.42904 0.462139 0.28832 0.858312 0.874012 0.976 1 
107 0.491747 0.395077 0.354168 1.052074 0.893084 0.834135 1 
108 0.502496 0.429295 0.341929 0.967844 0.70782 0.642557 1 
109 0.433659 0.291713 0.426838 0.884749 0.778385 0.752542 1 
110 0.455413 0.343093 0.356434 0.924542 0.696862 0.732354 1 
111 0.534156 0.333778 0.296707 0.791203 0.752724 0.808433 1 
112 0.451056 0.362905 0.338716 0.85942 0.924377 0.867368 1 
113 0.49696 0.355293 0.306616 0.853782 0.692324 0.739154 1 
114 0.652961 0.302354 0.344217 0.990628 0.770659 0.899874 1 
115 0.673943 0.316117 0.435853 1.002482 0.62683 0.711876 1 
116 0.532605 0.261005 0.352162 0.831225 0.623124 0.636042 2 
117 0.646785 0.318587 0.337597 0.863016 0.729925 0.806873 2 
118 0.523004 0.319069 0.455261 0.950279 0.701616 0.759431 2 
119 0.504322 0.404718 0.223411 0.738197 0.782313 0.659393 2 
120 0.502872 0.288318 0.425565 0.892524 0.827339 0.694583 2 
121 0.523556 0.530657 0.403498 0.977944 0.590104 0.647077 2 
122 0.534712 0.407567 0.352236 0.849062 0.753412 0.815336 2 
123 0.308113 0.374444 0.419726 1.063033 0.961813 0.89311 2 
124 0.500964 0.268695 0.350185 0.912011 0.686287 0.933017 2 
125 0.429145 0.396075 0.327581 1.013741 0.765767 0.756577 2 
126 0.610944 0.504043 0.422507 0.962616 0.786439 0.761792 2 
127 0.540335 0.48013 0.304705 0.911741 0.827648 0.813543 2 
128 0.500979 0.37757 0.368074 0.951365 0.913333 0.644809 2 
129 0.557348 0.349087 0.485971 0.972997 0.691989 0.770087 2 
130 0.474669 0.460363 0.375646 1.044016 0.832351 0.830836 2 
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Appendix E – Gait Analysis Matlab Program 

clear all 
close all 
numberofstrides=15; 
datapointsperstride=100; 
tic 
 
subjectnumberint=230; 
vf=80; 
  
nametosave=[int2str(subjectnumberint) 'vf' int2str(vf)] 
name=nametosave; 
subjectnumber=[int2str(subjectnumberint) '_' int2str(vf) 'vf'] 
     
row=subjectnumberint-200+1; 
column=vf/20+1; 
  
filename=['C:\MATLAB6p1\work\gait data mat files\' subjectnumber '.mat']; 
load(filename) 
  
fs = 100; % Sampling Frequency in hertz 
fn = fs/2; % Nyquist Frequency 
fc = 10; % Cut-off frequency for 2nd order butterworth filter 
[b,a] = butter(2, fc/fn); 
data = filtfilt(b,a,markerposition); 
  
  
%data = markerposition; 
% Assign names to each trajectory 
sacr(:,1:3) = data(:,1,1:3); 
lasi(:,1:3) = data(:,2,1:3); 
rasi(:,1:3) = data(:,3,1:3); 
lpsi(:,1:3) = data(:,4,1:3); 
rpsi(:,1:3) = data(:,5,1:3); 
lthi(:,1:3) = data(:,6,1:3); 
lkne(:,1:3) = data(:,7,1:3); 
ltib(:,1:3) = data(:,8,1:3); 
lank(:,1:3) = data(:,9,1:3); 
lhee(:,1:3) = data(:,10,1:3); 
lmt5(:,1:3) = data(:,11,1:3); 
ldor(:,1:3) = data(:,12,1:3); 
ltoe(:,1:3) = data(:,13,1:3); 
rthi(:,1:3) = data(:,14,1:3); 
rkne(:,1:3) = data(:,15,1:3); 
rtib(:,1:3) = data(:,16,1:3); 
rank(:,1:3) = data(:,17,1:3); 
rhee(:,1:3) = data(:,18,1:3); 
rmt5(:,1:3) = data(:,19,1:3); 
rdor(:,1:3) = data(:,20,1:3); 
rtoe(:,1:3) = data(:,21,1:3); 
  
%hip joint centers parameters 
beta=18.0*pi/180;%degrees 
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theta=28.4*pi/180;%degrees 
mm=0.0145;%marker radius 
  
t=length(data); 
for i =1:t 
     
    %HIP CENTER STUFF 
    dASIS=sqrt((lasi(i,1)-rasi(i,1))^2+(lasi(i,2)-rasi(i,2))^2+(lasi(i,3)-rasi(i,3))^2); 
     
    lengthrightleg=sqrt((rasi(i,1)-rkne(i,1))^2+(rasi(i,2)-rkne(i,2))^2+(rasi(i,3)-rkne(i,3))^2)+sqrt((rkne(i,1)-
rank(i,1))^2+(rkne(i,2)-rank(i,2))^2+(rkne(i,3)-rank(i,3))^2); 
    lengthleftleg=sqrt((lkne(i,1)-lank(i,1))^2+(lkne(i,2)-lank(i,2))^2+(lkne(i,3)-lank(i,3))^2)+sqrt((lasi(i,1)-
lkne(i,1))^2+(lasi(i,2)-lkne(i,2))^2+(lasi(i,3)-lkne(i,3))^2); 
     
    leglength=(lengthrightleg+lengthleftleg)/2; 
    C=leglength*0.115-0.0153; 
    LATD=0.1288*leglength-0.04856; 
    RATD=LATD; 
    aa=dASIS/2; 
     
    PELF=(rasi(i,1:3)+lasi(i,1:3))/2; 
    pelf(i,1:3)=PELF; 
     
    LHJCz=(-C*cos(theta)*cos(beta)-(LATD+mm)*sin(beta)); 
    RHJCz=(-C*cos(theta)*cos(beta)-(RATD+mm)*sin(beta)); 
     
    LHJCy=(C*cos(theta)*sin(beta)-(LATD+mm)*cos(beta)); 
    RHJCy=(C*cos(theta)*sin(beta)-(RATD+mm)*cos(beta)); 
     
    LHJCx=(-C*sin(theta)+aa); 
    RHJCx=(C*sin(theta)-aa); 
     
    %finding rotation to move HJCs 
    %alpha=atan2(lasi(i,3)-rasi(i,3),lasi(i,2)-rasi(i,2)); 
    alpha=atan2(sacr(i,3)-pelf(i,3),sacr(i,2)-pelf(i,2)); 
    gamma=atan2(lasi(i,3)-rasi(i,3),lasi(i,1)-rasi(i,1)); 
    delta=atan2(lasi(i,2)-rasi(i,2),lasi(i,1)-rasi(i,1)); 
     
    angles(i,:)=[alpha,gamma,delta]; 
    Rx=[1,0,0;0,cos(alpha),sin(alpha);0,-sin(alpha),cos(alpha)]; 
    Ry=[cos(gamma),0,-sin(gamma);0,1,0;sin(gamma),0,cos(gamma)]; 
    Rz=[cos(delta),sin(delta),0;-sin(delta),cos(delta),0;0,0,1]; 
     
    R=Rx*Ry*Rz; 
     
    LHJCr=R*[LHJCx;LHJCy;LHJCz]; 
    RHJCr=R*[RHJCx;RHJCy;RHJCz]; 
     
    LHJC=[PELF(1)+LHJCr(1),PELF(2)-LHJCr(2),PELF(3)+LHJCr(3)]; 
    RHJC=[PELF(1)+RHJCr(1),PELF(2)-RHJCr(2),PELF(3)+RHJCr(3)]; 
     
    RHJCtotal(i,:)=RHJC; 
    LHJCtotal(i,:)=LHJC; 
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    %Define limb vectors to use in determining angle between them 
    rightshin=[(rkne(i,1)-rank(i,1)),(rkne(i,2)-rank(i,2)),(rkne(i,3)-rank(i,3))]; 
    magrightshin=sqrt((rkne(i,1)-rank(i,1))^2+(rkne(i,2)-rank(i,2))^2+(rkne(i,3)-rank(i,3))^2); 
     
    rightfoot=[(rmt5(i,1)-rank(i,1)),(rmt5(i,2)-rank(i,2)),(rmt5(i,3)-rank(i,3))]; 
    magrightfoot=sqrt((rmt5(i,1)-rank(i,1))^2+(rmt5(i,2)-rank(i,2))^2+(rmt5(i,3)-rank(i,3))^2); 
     
    leftshin=[(lkne(i,1)-lank(i,1)),(lkne(i,2)-lank(i,2)),(lkne(i,3)-lank(i,3))]; 
    magleftshin=sqrt((lkne(i,1)-lank(i,1))^2+(lkne(i,2)-lank(i,2))^2+(lkne(i,3)-lank(i,3))^2); 
     
    leftfoot=[(lmt5(i,1)-lank(i,1)),(lmt5(i,2)-lank(i,2)),(lmt5(i,3)-lank(i,3))]; 
    magleftfoot=sqrt((lmt5(i,1)-lank(i,1))^2+(lmt5(i,2)-lank(i,2))^2+(lmt5(i,3)-lank(i,3))^2); 
     
    rightthigh=[(RHJC(1)-rkne(i,1)),(RHJC(2)-rkne(i,2)),(RHJC(3)-rkne(i,3))]; 
    magrightthigh=sqrt((RHJC(1)-rkne(i,1))^2+(RHJC(2)-rkne(i,2))^2+(RHJC(3)-rkne(i,3))^2); 
     
    righthip=[(rpsi(i,1)-rasi(i,1)),(rpsi(i,2)-rasi(i,2)),(rpsi(i,3)-rasi(i,3))]; 
    magrighthip=sqrt((rpsi(i,1)-rasi(i,1))^2+(rpsi(i,2)-rasi(i,2))^2+(rpsi(i,3)-rasi(i,3))^2); 
     
    leftthigh=[(LHJC(1)-lkne(i,1)),(LHJC(2)-lkne(i,2)),(LHJC(3)-lkne(i,3))]; 
    magleftthigh=sqrt((LHJC(1)-lkne(i,1))^2+(LHJC(2)-lkne(i,2))^2+(LHJC(3)-lkne(i,3))^2); 
     
    lefthip=[(lpsi(i,1)-lasi(i,1)),(lpsi(i,2)-lasi(i,2)),(lpsi(i,3)-lasi(i,3))]; 
    maglefthip=sqrt((lpsi(i,1)-lasi(i,1))^2+(lpsi(i,2)-lasi(i,2))^2+(lpsi(i,3)-lasi(i,3))^2); 
     
    RA(i)=(acos(dot(rightshin,rightfoot)/(magrightshin*magrightfoot))*180/pi); 
    LA(i)=(acos(dot(leftshin,leftfoot)/(magleftshin*magleftfoot))*180/pi); 
     
    RK(i)=(acos(dot(rightshin,rightthigh)/(magrightshin*magrightthigh))*180/pi); 
    LK(i)=(acos(dot(leftshin,leftthigh)/(magleftshin*magleftthigh))*180/pi); 
     
    RH(i)=(acos(dot(righthip,rightthigh)/(magrighthip*magrightthigh))*180/pi); 
    LH(i)=(acos(dot(lefthip,leftthigh)/(maglefthip*magleftthigh))*180/pi); 
end 
  
RA=transpose(RA); 
LA=transpose(LA); 
  
RK=transpose(RK); 
LK=transpose(LK); 
  
RH=transpose(RH); 
LH=transpose(LH); 
  
i=1:t; 
figure(1) 
subplot(2,1,1) 
plot(i,RH) 
title('Right Hip Angle vs time') 
xlabel('Time') 
ylabel('Angle') 
subplot(2,1,2) 
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plot(i,LH) 
title('Left Hip Angle vs time') 
xlabel('Time') 
ylabel('Angle') 
  
figure(2) 
subplot(2,1,1) 
plot(i,RK) 
title('Right Knee Angle vs time') 
xlabel('Time') 
ylabel('Angle of Flexion') 
subplot(2,1,2) 
plot(i,LK) 
title('Left Knee Angle vs time') 
xlabel('Time') 
ylabel('Angle of Flexion') 
  
figure(3) 
subplot(2,1,1) 
plot(i,RA) 
title('Right Ankle Angle vs time') 
xlabel('Time') 
ylabel('Angle of Plantar Flexion') 
subplot(2,1,2) 
plot(i,LA) 
title('Left Ankle Angle vs time') 
xlabel('Time') 
ylabel('Angle of Plantar Flexion') 
  
%%%Here's the stuff for variability measures 
  
TOH=input('Counting toe off (1) or heel off (2) or crash it(3):  '); 
if TOH==3 
    crashitnowthedatasucks 
else 
end 
  
% %start pulling out peaks and splining in between them if desired 
% for n=1:numberofstrides+1 
%     [X,Y]=ginput(2); 
%     if TOH==1 
%         [uselesspeak,I]=max(RA(round(X(1)):round(X(2)))); 
%     else 
%         [uselesspeak,I]=min(RA(round(X(1)):round(X(2))));     
%     end 
%     hold on 
%     subplot(2,1,1) 
%     plot(I+round(X(1))-1,uselesspeak,'rX') 
%     timeofpeaksRs(n+1)=[I+round(X(1))-1]; 
%     uselesspeaksR(n)=uselesspeak; 
% end 
%     %now spline 
% for p=1:numberofstrides 
%     xRs=timeofpeaksRs(p+1):timeofpeaksRs(p+2); 
%     xxRs=linspace(timeofpeaksRs(p+1),timeofpeaksRs(p+2),101); 
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%     rangeofRAs=RA(timeofpeaksRs(p+1):timeofpeaksRs(p+2)); 
%     rangeofRKs=RK(timeofpeaksRs(p+1):timeofpeaksRs(p+2)); 
%     rangeofRHs=RH(timeofpeaksRs(p+1):timeofpeaksRs(p+2)); 
%     splinedRAs=spline(xRs,rangeofRAs,xxRs); 
%     splinedRKs=spline(xRs,rangeofRKs,xxRs); 
%     splinedRHs=spline(xRs,rangeofRHs,xxRs); 
%     rightankleangles(p,:)=splinedRAs; 
%     rightkneeangles(p,:)=splinedRKs; 
%     righthipangles(p,:)=splinedRHs;        
% end 
% stringofRAs=rightankleangles(1,1:100); %this just sets the beginning so i can add onto stringofangles 
% stringofRKs=rightkneeangles(1,1:100); 
% stringofRHs=righthipangles(1,1:100); 
%  
% for q=2:numberofstrides 
%     stringofRAs=[stringofRAs,rightankleangles(q,1:100)]; 
%     stringofRKs=[stringofRKs,rightkneeangles(q,1:100)]; 
%     stringofRHs=[stringofRHs,righthipangles(q,1:100)]; 
% end 
% input('press enter to continue now with the left ankle'); 
% for n=1:numberofstrides+1 
%     [X,Y]=ginput(2); 
%     if TOH==1 
%         [uselesspeak,I]=max(LA(round(X(1)):round(X(2)))); 
%     else 
%         [uselesspeak,I]=min(LA(round(X(1)):round(X(2))));     
%     end 
%     hold on 
%     subplot(2,1,2) 
%     plot(I+round(X(1))-1,uselesspeak,'rX') 
%     timeofpeaksLs(n+1)=[I+round(X(1))-1]; 
%     uselesspeaksL(n)=uselesspeak; 
% end 
%     %now spline 
% for p=1:numberofstrides 
%     xLs=timeofpeaksLs(p+1):timeofpeaksLs(p+2); 
%     xxLs=linspace(timeofpeaksLs(p+1),timeofpeaksLs(p+2),101); 
%     rangeofLAs=LA(timeofpeaksLs(p+1):timeofpeaksLs(p+2));  
%     rangeofLKs=LK(timeofpeaksLs(p+1):timeofpeaksLs(p+2)); 
%     rangeofLHs=LH(timeofpeaksLs(p+1):timeofpeaksLs(p+2)); 
%     splinedLAs=spline(xLs,rangeofLAs,xxLs); 
%     splinedLKs=spline(xLs,rangeofLKs,xxLs); 
%     splinedLHs=spline(xLs,rangeofLHs,xxLs); 
%     leftankleangles(p,:)=splinedLAs; 
%     leftkneeangles(p,:)=splinedLKs; 
%     lefthipangles(p,:)=splinedLHs;      
% end 
% stringofLAs=leftankleangles(1,1:100); %this just sets the beginning so i can add onto stringofangles 
% stringofLKs=leftkneeangles(1,1:100); 
% stringofLHs=lefthipangles(1,1:100); 
%  
%  
%  
% for q=2:numberofstrides 
%     stringofLAs=[stringofLAs,leftankleangles(q,1:100)]; 
%     stringofLKs=[stringofLKs,leftkneeangles(q,1:100)]; 
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%     stringofLHs=[stringofLHs,lefthipangles(q,1:100)]; 
% end 
%  
% for n=1:numberofstrides 
%     averagetime(n)=timeofpeaksRs(n+2)-timeofpeaksRs(n+1);     
% end 
% %format short 
% averagestridetime=sum(averagetime)/(numberofstrides) 
% peakRs=mean(uselesspeaksR); 
% peakLs=mean(uselesspeaksL); 
% hold on 
% for n=1:numberofstrides+1 
% subplot(2,1,1) 
% plot(timeofpeaksRs(2)+averagestridetime*(n-1),peakRs,'rX') 
% subplot(2,1,2) 
% plot(timeofpeaksLs(2)+averagestridetime*(n-1),peakLs,'rX') 
% end 
%  
% %%% save RA_subjectnumber 
%  
% newfilenameRAs=['ras' nametosave '.txt']; 
% newfilenameLAs=['las' nametosave '.txt']; 
% newfilenameRKs=['rks' nametosave '.txt']; 
% newfilenameLKs=['lks' nametosave '.txt']; 
% newfilenameRHs=['rhs' nametosave '.txt']; 
% newfilenameLHs=['lhs' nametosave '.txt']; 
%  
% %first make a giant matrix of values 30 rows, 100 columns for each measure 
% for n=1:30 
%     for o=1:100 
%         STDEVA_MATRIX_RA(n,o)=stringofRAs((n-1)*100+o); 
%         STDEVA_MATRIX_LA(n,o)=stringofLAs((n-1)*100+o); 
%  
%         STDEVA_MATRIX_RK(n,o)=stringofRKs((n-1)*100+o); 
%         STDEVA_MATRIX_LK(n,o)=stringofLKs((n-1)*100+o); 
%  
%         STDEVA_MATRIX_RH(n,o)=stringofRHs((n-1)*100+o); 
%         STDEVA_MATRIX_LH(n,o)=stringofLHs((n-1)*100+o); 
%     end 
% end 
%  
% STD_VECTOR_RA=std(STDEVA_MATRIX_RA); 
% STD_VECTOR_LA=std(STDEVA_MATRIX_LA); 
%  
% STD_VECTOR_RK=std(STDEVA_MATRIX_RK); 
% STD_VECTOR_LK=std(STDEVA_MATRIX_LK); 
%  
% STD_VECTOR_RH=std(STDEVA_MATRIX_RH); 
% STD_VECTOR_LH=std(STDEVA_MATRIX_LH); 
%  
% STD_TRIAL_RA=mean(STD_VECTOR_RA); 
% STD_TRIAL_LA=mean(STD_VECTOR_LA); 
%  
% STD_TRIAL_RK=mean(STD_VECTOR_RK); 
% STD_TRIAL_LK=mean(STD_VECTOR_LK); 
%  
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% STD_TRIAL_RH=mean(STD_VECTOR_RH); 
% STD_TRIAL_LH=mean(STD_VECTOR_LH); 
%  
% RASTDEVA=dlmread('RASTDEVA.txt','\t',[0,0,30,4]); 
% LASTDEVA=dlmread('LASTDEVA.txt','\t',[0,0,30,4]); 
%  
% RKSTDEVA=dlmread('RKSTDEVA.txt','\t',[0,0,30,4]); 
% LKSTDEVA=dlmread('LKSTDEVA.txt','\t',[0,0,30,4]); 
%  
% RHSTDEVA=dlmread('RHSTDEVA.txt','\t',[0,0,30,4]); 
% LHSTDEVA=dlmread('LHSTDEVA.txt','\t',[0,0,30,4]); 
%  
% RASTDEVA(row,column)=STD_TRIAL_RA; 
% LASTDEVA(row,column)=STD_TRIAL_LA; 
%  
% RKSTDEVA(row,column)=STD_TRIAL_RK; 
% LKSTDEVA(row,column)=STD_TRIAL_LK; 
%  
% RHSTDEVA(row,column)=STD_TRIAL_RH; 
% LHSTDEVA(row,column)=STD_TRIAL_LH; 
%  
% save RASTDEVA.txt RASTDEVA -ascii -double -tabs 
% save LASTDEVA.txt LASTDEVA -ascii -double -tabs 
%  
% save RKSTDEVA.txt RKSTDEVA -ascii -double -tabs 
% save LKSTDEVA.txt LKSTDEVA -ascii -double -tabs 
%  
% save RHSTDEVA.txt RHSTDEVA -ascii -double -tabs 
% save LHSTDEVA.txt LHSTDEVA -ascii -double -tabs 
%  
% save(newfilenameRAs,'stringofRAs','-ascii','-tabs','-double') 
% save(newfilenameLAs,'stringofLAs','-ascii','-tabs','-double') 
% save(newfilenameRKs,'stringofRKs','-ascii','-tabs','-double') 
% save(newfilenameLKs,'stringofLKs','-ascii','-tabs','-double') 
% save(newfilenameRHs,'stringofRHs','-ascii','-tabs','-double') 
% save(newfilenameLHs,'stringofLHs','-ascii','-tabs','-double') 
%  
%  
% clear stringofRAs stringofLAs stringofRKs stringofLKs stringofRHs stringofLHs 
  
averagestridetime=input('average stride time from excel spreadsheet: '); 
  
  
%%% and now back to the old stuff 
  
  
%  uncomment this when going back to dynamic stability and variability 
% figure(10) 
% subplot(2,1,1) 
% plot(i,RA) 
% title('Right Ankle Angle vs time') 
% xlabel('Time') 
% ylabel('Angle of Plantar Flexion') 
% subplot(2,1,2) 
% plot(i,LA) 
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% title('Left Ankle Angle vs time') 
% xlabel('Time') 
% ylabel('Angle of Plantar Flexion') 
  
%grab the first and last peak and splines 3000 points between them 
  
for n=1:2 
    [X,Y]=ginput(2); 
    if TOH==1 
        [uselesspeak,I]=max(RA(round(X(1)):round(X(2)))); 
    else 
        [uselesspeak,I]=min(RA(round(X(1)):round(X(2))));     
    end 
    hold on 
        
    if n==1 
    subplot(2,1,1) 
    plot(I+round(X(1))-1,uselesspeak,'rX') 
    timeofpeaksR(n+1)=[I+round(X(1))-1]; 
    uselesspeaksR(n)=uselesspeak; 
        for j=1:numberofstrides-1 
        plot(timeofpeaksR(n+1)+averagestridetime*j,uselesspeaksR(1),'rX') 
        end 
    elseif n==2 
    subplot(2,1,1) 
    plot(I+round(X(1))-1,uselesspeak,'bO') 
    timeofpeaksR(n+1)=[I+round(X(1))-1]; 
    uselesspeaksR(n)=uselesspeak; 
    end 
     
end 
    %now count them out 
  
% rightankleangle(1,:)=RA(timeofpeaksR(2):timeofpeaksR(3)); 
% rightkneeangle(1,:)=RK(timeofpeaksR(2):timeofpeaksR(3)); 
% righthipangle(1,:)=RH(timeofpeaksR(2):timeofpeaksR(3)); 
  
    xR=timeofpeaksR(2):timeofpeaksR(3); 
    xxR=linspace(timeofpeaksR(2),timeofpeaksR(3),numberofstrides*datapointsperstride);%This will now 
30 full strides into 3000 data points 
    rangeofRA=RA(timeofpeaksR(2):timeofpeaksR(3));     %change both right and left numbers 
    rangeofRK=RK(timeofpeaksR(2):timeofpeaksR(3)); 
    rangeofRH=RH(timeofpeaksR(2):timeofpeaksR(3)); 
    splinedRA=spline(xR,rangeofRA,xxR); 
    splinedRK=spline(xR,rangeofRK,xxR); 
    splinedRH=spline(xR,rangeofRH,xxR); 
    rightankleangle(1,:)=splinedRA; 
    rightkneeangle(1,:)=splinedRK; 
    righthipangle(1,:)=splinedRH;            
     
  
stringofRA=rightankleangle; 
stringofRK=rightkneeangle; 
stringofRH=righthipangle; 
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input('press enter to continue now with the left ankle'); 
for n=1:2 
    [X,Y]=ginput(2); 
    if TOH==1 
        [uselesspeak,I]=max(LA(round(X(1)):round(X(2)))); 
    else 
        [uselesspeak,I]=min(LA(round(X(1)):round(X(2))));     
    end 
    hold on 
        
    if n==1 
    subplot(2,1,2) 
    plot(I+round(X(1))-1,uselesspeak,'rX') 
    timeofpeaksL(n+1)=[I+round(X(1))-1]; 
    uselesspeaksL(n)=uselesspeak; 
        for j=1:numberofstrides-1 
        plot(timeofpeaksL(n+1)+averagestridetime*j,uselesspeaksL(1),'rX') 
        end 
    elseif n==2 
    subplot(2,1,2) 
    plot(I+round(X(1))-1,uselesspeak,'bO') 
    timeofpeaksL(n+1)=[I+round(X(1))-1]; 
    uselesspeaksL(n)=uselesspeak; 
    end 
     
end 
    %now count them out 
  
% leftankleangle(1,:)=LA(timeofpeaksL(2):timeofpeaksL(3)); 
% leftkneeangle(1,:)=LK(timeofpeaksL(2):timeofpeaksL(3)); 
% lefthipangle(1,:)=LH(timeofpeaksL(2):timeofpeaksL(3)); 
  
  
    xL=timeofpeaksL(2):timeofpeaksL(3); 
    xxL=linspace(timeofpeaksL(2),timeofpeaksL(3),numberofstrides*datapointsperstride);%This will now 30 
full strides into 3000 data points 
    rangeofLA=LA(timeofpeaksL(2):timeofpeaksL(3));     %change both right and left numbers 
    rangeofLK=LK(timeofpeaksL(2):timeofpeaksL(3)); 
    rangeofLH=LH(timeofpeaksL(2):timeofpeaksL(3)); 
    splinedLA=spline(xL,rangeofLA,xxL); 
    splinedLK=spline(xL,rangeofLK,xxL); 
    splinedLH=spline(xL,rangeofLH,xxL); 
    leftankleangle(1,:)=splinedLA; 
    leftkneeangle(1,:)=splinedLK; 
    lefthipangle(1,:)=splinedLH;            
  
stringofLA=leftankleangle; 
stringofLK=leftkneeangle; 
stringofLH=lefthipangle; 
  
for n=1:1 
    averagetime(n)=timeofpeaksR(n+2)-timeofpeaksR(n+1);     
end 
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%end of splining stuff 
  
%%% save RA_subjectnumber including a column for average stride time 
  
newfilenameRA=['ra' nametosave '.txt']; 
newfilenameLA=['la' nametosave '.txt']; 
newfilenameRK=['rk' nametosave '.txt']; 
newfilenameLK=['lk' nametosave '.txt']; 
newfilenameRH=['rh' nametosave '.txt']; 
newfilenameLH=['lh' nametosave '.txt']; 
  
%%I CHANGED THIS 
%% 
stringofRA=transpose(stringofRA); 
stringofLA=transpose(stringofLA); 
stringofRK=transpose(stringofRK); 
stringofLK=transpose(stringofLK); 
stringofRH=transpose(stringofRH); 
stringofLH=transpose(stringofLH); 
  
save(newfilenameRA,'stringofRA','-ascii','-tabs','-double') 
save(newfilenameLA,'stringofLA','-ascii','-tabs','-double') 
save(newfilenameRK,'stringofRK','-ascii','-tabs','-double') 
save(newfilenameLK,'stringofLK','-ascii','-tabs','-double') 
save(newfilenameRH,'stringofRH','-ascii','-tabs','-double') 
save(newfilenameLH,'stringofLH','-ascii','-tabs','-double') 
  
%%%% END OF FIRST PART,  
  
ratime=0.10*datapointsperstride; 
latime=0.10*datapointsperstride; 
rktime=0.10*datapointsperstride; 
lktime=0.10*datapointsperstride; 
rhtime=0.10*datapointsperstride; 
lhtime=0.10*datapointsperstride; 
  
w=0.7*averagestridetime; 
divergencetimeR=length(stringofRA); 
divergencetimeL=length(stringofLA); 
  
line1=sprintf([newfilenameRA ' 1 1 0 5 ',int2str(ratime),' ',int2str(w),' ',int2str(divergencetimeR)]); 
line2=sprintf([newfilenameLA ' 1 1 0 5 ',int2str(latime),' ',int2str(w),' ',int2str(divergencetimeL)]); 
line3=sprintf([newfilenameRK ' 1 1 0 5 ',int2str(rktime),' ',int2str(w),' ',int2str(divergencetimeR)]); 
line4=sprintf([newfilenameLK ' 1 1 0 5 ',int2str(lktime),' ',int2str(w),' ',int2str(divergencetimeL)]); 
line5=sprintf([newfilenameRH ' 1 1 0 5 ',int2str(rhtime),' ',int2str(w),' ',int2str(divergencetimeR)]); 
line6=sprintf([newfilenameLH ' 1 1 0 5 ',int2str(lhtime),' ',int2str(w),' ',int2str(divergencetimeL)]); 
  
  
rosensteinfile=[line1,'\n',line2,'\n',line3,'\n',line4,'\n',line5,'\n',line6,'\n']; 
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file = fopen('grouprun.txt','w+'); 
fprintf(file,rosensteinfile); 
fclose(file); 
  
%END OF SECOND PART, NOW  
line1 
%input('pressing enter will run Rosensteins program') 
dos('C:\Documents and Settings\scenglan\Desktop\rosenstein_program_back_stability\l1d2.exe') 
disp(subjectnumber) 
%NOW THIS PLOTS THE DIVERGENCE OF POINTS, POLYFITS THE LYAPUNOV EXPONENTS, 
%AND DISPLAYS THE DATA TO GO INTO THE EXCEL SPREADSHEET 
  
format long 
  
data = dlmread(['results.l1'],'\t',0,0); 
time=1:length(data); 
%averagestridetime=input('average stride time?') 
time=transpose(time)/averagestridetime; 
%WILL NEED ONE OF THESE SECTIONS FOR EACH MEASUREMENT ANALYZED 
rightankle=2; 
leftankle=3; 
rightknee=4; 
leftknee=5; 
righthip=6; 
lefthip=7; 
  
%RIGHT ANKLE HERE 
figure(4) 
plot(time,data(:,rightankle)) 
xlabel('stride') 
ylabel('<ln(d)>') 
Y=max(data(:,rightankle)); 
  
timeminusone=abs(time-1); 
timeminusfour=abs(time-4); 
timeminusten=abs(time-10); 
  
[subtractone,m]=min(timeminusone); 
[subtractfour,n]=min(timeminusfour); 
[subtractten,p]=min(timeminusten); 
  
LstRA=polyfit(time(1:m),data(1:length(time(1:m)),rightankle),1); 
LmtRA=polyfit(time(m:n),data(m:n,rightankle),1); 
LltRA=polyfit(time(n:p),data(n:p,rightankle),1); 
hold on 
plot(time(1:m),LstRA(1)*time(1:m)+LstRA(2),'r') 
plot(time(m:n),LmtRA(1)*time(m:n)+LmtRA(2),'r') 
plot(time(n:p),LltRA(1)*time(n:p)+LltRA(2),'r') 
axis([0,10,0,Y]) 
ShorttermLyapunovexponentRA=LstRA(1); 
MediumtermLyapunovexponentRA=LmtRA(1); 
LongtermLyapunovexponentRA=LltRA(1); 
  
%LEFT ANKLE HERE 
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figure(5) 
plot(time,data(:,leftankle)) 
xlabel('stride') 
ylabel('<ln(d)>') 
Y=max(data(:,leftankle)); 
  
LstLA=polyfit(time(1:m),data(1:length(time(1:m)),leftankle),1); 
LmtLA=polyfit(time(m:n),data(m:n,leftankle),1); 
LltLA=polyfit(time(n:p),data(n:p,leftankle),1); 
hold on 
plot(time(1:m),LstLA(1)*time(1:m)+LstLA(2),'r') 
plot(time(m:n),LmtLA(1)*time(m:n)+LmtLA(2),'r') 
plot(time(n:p),LltLA(1)*time(n:p)+LltLA(2),'r') 
axis([0,10,0,Y]) 
ShorttermLyapunovexponentLA=LstLA(1); 
MediumtermLyapunovexponentLA=LmtLA(1); 
LongtermLyapunovexponentLA=LltLA(1); 
  
%RIGHT KNEE HERE 
figure(6) 
plot(time,data(:,rightknee)) 
xlabel('stride') 
ylabel('<ln(d)>') 
Y=max(data(:,rightknee)); 
  
LstRK=polyfit(time(1:m),data(1:length(time(1:m)),rightknee),1); 
LmtRK=polyfit(time(m:n),data(m:n,rightknee),1); 
LltRK=polyfit(time(n:p),data(n:p,rightknee),1); 
hold on 
plot(time(1:m),LstRK(1)*time(1:m)+LstRK(2),'r') 
plot(time(m:n),LmtRK(1)*time(m:n)+LmtRK(2),'r') 
plot(time(n:p),LltRK(1)*time(n:p)+LltRK(2),'r') 
axis([0,10,0,Y]) 
ShorttermLyapunovexponentRK=LstRK(1); 
MediumtermLyapunovexponentRK=LmtRK(1); 
LongtermLyapunovexponentRK=LltRK(1); 
  
%LEFT KNEE HERE 
figure(7) 
plot(time,data(:,leftknee)) 
xlabel('stride') 
ylabel('<ln(d)>') 
Y=max(data(:,leftknee)); 
  
LstLK=polyfit(time(1:m),data(1:length(time(1:m)),leftknee),1); 
LmtLK=polyfit(time(m:n),data(m:n,leftknee),1); 
LltLK=polyfit(time(n:p),data(n:p,leftknee),1); 
hold on 
plot(time(1:m),LstLK(1)*time(1:m)+LstLK(2),'r') 
plot(time(m:n),LmtLK(1)*time(m:n)+LmtLK(2),'r') 
plot(time(n:p),LltLK(1)*time(n:p)+LltLK(2),'r') 
axis([0,10,0,Y]) 
ShorttermLyapunovexponentLK=LstLK(1); 
MediumtermLyapunovexponentLK=LmtLK(1); 
LongtermLyapunovexponentLK=LltLK(1); 
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%RIGHT HIP HERE 
figure(8) 
plot(time,data(:,righthip)) 
xlabel('stride') 
ylabel('<ln(d)>') 
Y=max(data(:,righthip)); 
  
LstRH=polyfit(time(1:m),data(1:length(time(1:m)),righthip),1); 
LmtRH=polyfit(time(m:n),data(m:n,righthip),1); 
LltRH=polyfit(time(n:p),data(n:p,righthip),1); 
hold on 
plot(time(1:m),LstRH(1)*time(1:m)+LstRH(2),'r') 
plot(time(m:n),LmtRH(1)*time(m:n)+LmtRH(2),'r') 
plot(time(n:p),LltRH(1)*time(n:p)+LltRH(2),'r') 
axis([0,10,0,Y]) 
ShorttermLyapunovexponentRH=LstRH(1); 
MediumtermLyapunovexponentRH=LmtRH(1); 
LongtermLyapunovexponentRH=LltRH(1); 
  
%LEFT HIP HERE 
figure(9) 
plot(time,data(:,lefthip)) 
xlabel('stride') 
ylabel('<ln(d)>') 
Y=max(data(:,lefthip)); 
  
LstLH=polyfit(time(1:m),data(1:length(time(1:m)),lefthip),1); 
LmtLH=polyfit(time(m:n),data(m:n,lefthip),1); 
LltLH=polyfit(time(n:p),data(n:p,lefthip),1); 
hold on 
plot(time(1:m),LstLH(1)*time(1:m)+LstLH(2),'r') 
plot(time(m:n),LmtLH(1)*time(m:n)+LmtLH(2),'r') 
plot(time(n:p),LltLH(1)*time(n:p)+LltLH(2),'r') 
axis([0,10,0,Y]) 
ShorttermLyapunovexponentLH=LstLH(1); 
MediumtermLyapunovexponentLH=LmtLH(1); 
LongtermLyapunovexponentLH=LltLH(1); 
  
%Load stuff for for autosaving 
  
RALST=dlmread('RALSTTDten.txt','\t',[0,0,30,4]); 
LALST=dlmread('LALSTTDten.txt','\t',[0,0,30,4]); 
  
RKLST=dlmread('RKLSTTDten.txt','\t',[0,0,30,4]); 
LKLST=dlmread('LKLSTTDten.txt','\t',[0,0,30,4]); 
  
RHLST=dlmread('RHLSTTDten.txt','\t',[0,0,30,4]); 
LHLST=dlmread('LHLSTTDten.txt','\t',[0,0,30,4]); 
  
RALST(row,column)=LstRA(1); 
LALST(row,column)=LstLA(1); 
RKLST(row,column)=LstRK(1); 
LKLST(row,column)=LstLK(1); 
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RHLST(row,column)=LstRH(1); 
LHLST(row,column)=LstLH(1); 
  
%Display important data 
fprintf('\n Subject Number and trial=%s',name) 
fprintf('\n Average stride time =%3.4f',averagestridetime) 
  
LstRA(1) 
LstLA(1) 
LstRK(1) 
LstLK(1) 
LstRH(1) 
LstLH(1) 
  
  
save RALSTTDten.txt RALST -ascii -double -tabs 
save LALSTTDten.txt LALST -ascii -double -tabs 
save RKLSTTDten.txt RKLST -ascii -double -tabs 
save LKLSTTDten.txt LKLST -ascii -double -tabs 
save RHLSTTDten.txt RHLST -ascii -double -tabs 
save LHLSTTDten.txt LHLST -ascii -double -tabs 
  
toc 
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Appendix F – Back Analysis Matlab Program 

%%% This is the final back data program, automated but with manual 
%%% inputs, EA2 fixed, and splined for 4500 data points per 15 
%%% cycles 
  
clear all 
close all 
tic 
  
%initiate spreadsheets to save results 
readysetgo=input('Ready Set Go (are you sure you are not saving over something important?):'); 
yesorno=input('Rewrite over arrays or not?:  1 for yes 2 for no:  '); 
if yesorno == 1 
     
    ARRAY=zeros(31,10); 
     
    ARRAY(1,2:10)=[2,3,4,5,6,7,8,9,10]; 
     
    for i=1:15 
        ARRAY(1+i,1)=[100+i]; 
        ARRAY(1+i,10)=1; 
    end 
     
    for i=16:30 
        ARRAY(1+i,1)=[100+i]; 
        ARRAY(1+i,10)=2; 
    end 
     
    M1EP1LSTR300=ARRAY; 
    M1EP2LSTR300=ARRAY; 
    M1EP3LSTR300=ARRAY; 
     
    M1EA1LSTR300=ARRAY; 
    M1EA2LSTR300=ARRAY; 
    M1EA3LSTR300=ARRAY; 
     
    M4EP1LSTR300=ARRAY; 
    M4EP2LSTR300=ARRAY; 
    M4EP3LSTR300=ARRAY; 
     
    M4EA1LSTR300=ARRAY; 
    M4EA2LSTR300=ARRAY; 
    M4EA3LSTR300=ARRAY; 
     
    M1EPCLSTR300=ARRAY; 
    M1EACLSTR300=ARRAY; 
     
    M1EAULSTR300=ARRAY; 
    averagecycletimespreadsheet=ARRAY; 
    save averagecycletimespreadsheet.txt averagecycletimespreadsheet -ascii -double -tabs 
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    save M1EP1LSTR300.txt M1EP1LSTR300 -ascii -double -tabs 
    save M1EP2LSTR300.txt M1EP2LSTR300 -ascii -double -tabs 
    save M1EP3LSTR300.txt M1EP3LSTR300 -ascii -double -tabs 
     
    save M1EA1LSTR300.txt M1EA1LSTR300 -ascii -double -tabs 
    save M1EA2LSTR300.txt M1EA2LSTR300 -ascii -double -tabs 
    save M1EA3LSTR300.txt M1EA3LSTR300 -ascii -double -tabs 
     
    save M1EAULSTR300.txt M1EAULSTR300 -ascii -double -tabs 
     
    save M4EP1LSTR300.txt M4EP1LSTR300 -ascii -double -tabs 
    save M4EP2LSTR300.txt M4EP2LSTR300 -ascii -double -tabs 
    save M4EP3LSTR300.txt M4EP3LSTR300 -ascii -double -tabs 
     
    save M4EA1LSTR300.txt M4EA1LSTR300 -ascii -double -tabs 
    save M4EA2LSTR300.txt M4EA2LSTR300 -ascii -double -tabs 
    save M4EA3LSTR300.txt M4EA3LSTR300 -ascii -double -tabs 
     
    save M1EPCLSTR300.txt M1EPCLSTR300 -ascii -double -tabs 
    save M1EACLSTR300.txt M1EACLSTR300 -ascii -double -tabs 
     
elseif yesorno == 2 
end 
  
    %END OF SPREADSHEET INITATION 
     
%define global constants 
  
%Reconstruction parameters 
numberofcycles=15; 
resampledcyclelength=300; 
m=5; 
EPtime=0.1*resampledcyclelength; 
EAtime=EPtime; 
%w=0.7*averagecycletime; have to 
%define this lower when there's an 
%average, line ~400 
divergencetime=numberofcycles*resampledcyclelength; 
  
  
  
  
  
  
  
%%%         START THE LOOP 
  
for subject = 1:30  %1 or starting at where it last crashed 
  
    subjectnumber=100+subject; 
     
    if subjectnumber < 116 
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        subjectgender = ['F']; 
        genderfile=subjectnumber; 
    elseif subjectnumber > 115 
        subjectgender = ['M']; 
        genderfile=subjectnumber-15; 
    else 
    end 
     
    for speed = 1:2             %1 slow 2 fast 
        for direction = 1:4     %1-V 2-H 3-DR 4-DL           
            input('new subject, keep going?'); 
            close all 
             
            if direction == 1 
                column=2; 
                peaksforsplining=3; 
                trialtype=['v']; 
            elseif direction == 2 
                column=3; 
                peaksforsplining=2; 
                trialtype=['h']; 
            elseif direction == 3 
                column=4; 
                peaksforsplining=3; 
                trialtype=['dr']; 
            elseif direction == 4 
                column=5; 
                peaksforsplining=3; 
                trialtype=['dl']; 
            else 
            end 
             
            if speed==1 
                column=column; 
                averagespacer=300; 
                subjectspeed=['s']; 
                stringfilename=['C:\Documents and Settings\scenglan\Desktop\back stability\CS', 
subjectgender, int2str(genderfile),'slow',trialtype,'.exp']; 
            elseif speed==2 
                column=column+4; 
                subjectspeed=['f']; 
                averagespacer=150; 
                stringfilename=['C:\Documents and Settings\scenglan\Desktop\back stability\CS', 
subjectgender, int2str(genderfile),'fast',trialtype,'.exp']; 
            end 
             
            if subjectgender==['F'] 
                row=genderfile-100+1; 
            elseif subjectgender==['M'] 
                row=genderfile-100+16; 
            else 
            end 
                      
            nametosave=[int2str(subjectnumber),subjectspeed,trialtype]; 
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            stringfilename 
            data=dlmread(stringfilename,'\t',9,0); 
             
            %ALL THE MEAT GOES HERE 
  
             
            t=length(data); 
            % Assign names to each trajectory 
             
            M1EP1r=data(:,2); 
            M1EP2r=data(:,3); 
            M1EP3r=data(:,4); 
             
            M1EA1r=data(:,5); 
            M1EA2r=data(:,6); 
            M1EA3r=data(:,7); 
             
            M4EP1r=data(:,8); 
            M4EP2r=data(:,9); 
            M4EP3r=data(:,10); 
             
            M4EA1r=data(:,11); 
            M4EA2r=data(:,12); 
            M4EA3r=data(:,13); 
             
            M1EP1r=transpose(M1EP1r); 
            M1EP2r=transpose(M1EP2r); 
            M1EP3r=transpose(M1EP3r); 
             
            M1EA1r=transpose(M1EA1r); 
            M1EA2r=transpose(M1EA2r); 
            M1EA3r=transpose(M1EA3r); 
             
            M4EP1r=transpose(M4EP1r); 
            M4EP2r=transpose(M4EP2r); 
            M4EP3r=transpose(M4EP3r); 
             
            M4EA1r=transpose(M4EA1r); 
            M4EA2r=transpose(M4EA2r); 
            M4EA3r=transpose(M4EA3r); 
             
            i=1:t; 
             
            figure(2) 
            subplot(3,1,1) 
            plot(i,M1EA1r) 
            title('Marker 1 EA 1') 
            xlabel('Time') 
            ylabel('Angle') 
            subplot(3,1,2) 
            plot(i,M1EA2r)%,'b.') 
            title('Marker 1 EA 2') 
            xlabel('Time') 

 95



            ylabel('Angle') 
            subplot(3,1,3) 
            plot(i,M1EA3r) 
            title('Marker 1 EA 3') 
            xlabel('Time') 
            ylabel('Angle') 
             
            figure(3) 
            subplot(3,1,1) 
            plot(i,M4EA1r) 
            title('Marker 4 EA 1') 
            xlabel('Time') 
            ylabel('Angle') 
            subplot(3,1,2) 
            plot(i,M4EA2r) 
            title('Marker 4 EA 2') 
            xlabel('Time') 
            ylabel('Angle') 
            subplot(3,1,3) 
            plot(i,M4EA3r) 
            title('Marker 4 EA 3') 
            xlabel('Time') 
            ylabel('Angle') 
             
            M1EA1r=overthetopfunction(M1EA1r,t); 
            M1EA2r=overthetopfunction(M1EA2r,t); 
            M1EA3r=overthetopfunction(M1EA3r,t); 
             
            M4EA1r=overthetopfunction(M4EA1r,t); 
            M4EA2r=overthetopfunction(M4EA2r,t); 
            M4EA3r=overthetopfunction(M4EA3r,t); 
             
             
             
            rawdata(:,14)=transpose(M1EA2r);  
            %Fix EA2 
             
            figure(2) 
            fixea2ornot=input('Does EA2 need to be fixed? (1) for yes, anything else for no: '); 
             
            if fixea2ornot==1 
                 
                TOH=1;% formerly an option % input('Counting peaks (1) or valleys? (2):  '); 
                %start pulling out peaks and splining in between them 
                for n=1:numberofcycles+4        
                    [X,Y]=ginput(3); 
                    [uselesspeak1,e2I]=max(M1EA2r(round(X(1)):round(X(2))));; 
                    [uselesspeak2,e2II]=max(M1EA2r(round(X(2)):round(X(3))));; 
                    ea2I=round(e2I+X(1)); 
                    ea2II=round(e2II+X(2)); 
                    
                    hold on 
                         
                    gaplength=(ea2II-ea2I); 
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                    for i=1:gaplength-1 
                        M1EA2patch(i)=M1EA2r(ea2II-i); 
                    end 
                     
                    fillersection=-M1EA2patch+uselesspeak2+uselesspeak1;%-
M1EA2patch+max(M1EA2patch); 
                    subplot(3,1,2) 
                    plot(ea2I+1:ea2II-1,fillersection,'r.') 
                    hold on 
                    %M1EA2r(ea2I+1:ea2II-1)=fillersection; 
                    M1EA2r(ea2I:ea2II-2)=fillersection; 
%                     if n==5 
%                         crash 
%                     end 
                     
                    clear M1EA2patch i ea2II ea2I e2I e2II gaplength  
                end 
                     
            end   
            figure(50) 
            plot(1:length(M1EA2r),M1EA2r) 
             
            %%RECOMPILE THE DATA ARRAY TO TRY FILTERING IT 
            rawdata(:,2)=transpose(M1EP1r); 
            rawdata(:,3)=transpose(M1EP2r); 
            rawdata(:,4)=transpose(M1EP3r); 
             
            rawdata(:,5)=transpose(M1EA1r); 
            rawdata(:,6)=transpose(M1EA2r); 
            rawdata(:,7)=transpose(M1EA3r); 
             
            rawdata(:,8)=transpose(M4EP1r); 
            rawdata(:,9)=transpose(M4EP2r); 
            rawdata(:,10)=transpose(M4EP3r); 
             
            rawdata(:,11)=transpose(M4EA1r); 
            rawdata(:,12)=transpose(M4EA2r); 
            rawdata(:,13)=transpose(M4EA3r);            
             
            %%%FILTER HERE 
            fs = 100; % Sampling Frequency in hertz 
            fn = fs/2; % Nyquist Frequency 
            fc = 10; % Cut-off frequency for 2nd order butterworth filter 
            [b,a] = butter(2, fc/fn); 
            fdata = filtfilt(b,a,rawdata); 
             
            M1EP1=fdata(:,2); 
            M1EP2=fdata(:,3); 
            M1EP3=fdata(:,4); 
             
            M1EA1=fdata(:,5); 
            M1EA2=fdata(:,6); 
            M1EA3=fdata(:,7); 
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            M4EP1=fdata(:,8); 
            M4EP2=fdata(:,9); 
            M4EP3=fdata(:,10); 
             
            M4EA1=fdata(:,11); 
            M4EA2=fdata(:,12); 
            M4EA3=fdata(:,13);             
             
            M1EAU=fdata(:,14); 
            %unnormalized 
            M1EPC=sqrt((M1EP1).^2+(M1EP2).^2+(M1EP3).^2); 
            M1EAC=sqrt((M1EA1).^2+(M1EA2).^2+(M1EA3).^2);  
            %normalized 
 
            %%%PLOT FILTERED DATA 
             
            i=1:t; 
             
            figure(5) 
            subplot(3,1,1) 
            plot(i,M1EA1) 
            title('Fixed Marker 1 EA 1') 
            xlabel('Time') 
            ylabel('Angle') 
            subplot(3,1,2) 
            plot(i,M1EA2) 
            title('Marker 1 EA 2') 
            xlabel('Time') 
            ylabel('Angle') 
            subplot(3,1,3) 
            plot(i,M1EA3) 
            title('Marker 1 EA 3') 
            xlabel('Time') 
            ylabel('Angle') 
                                    
            figure(6) 
            subplot(3,1,1) 
            plot(i,M4EA1) 
            title('Fixed Marker 4 EA 1') 
            xlabel('Time') 
            ylabel('Angle') 
            subplot(3,1,2) 
            plot(i,M4EA2) 
            title('Marker 4 EA 2') 
            xlabel('Time') 
            ylabel('Angle') 
            subplot(3,1,3) 
            plot(i,M4EA3) 
            title('Marker 4 EA 3') 
            xlabel('Time') 
            ylabel('Angle')             
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            figure(7) 
            subplot(2,1,1) 
            plot(i,M1EPC) 
            title('Fixed Marker 1 EP C') 
            xlabel('Time') 
            ylabel('Angle') 
            subplot(2,1,2) 
            plot(i,M1EAC) 
            title('Marker 1 EA C') 
            xlabel('Time') 
            ylabel('Angle') 
             
             
             
            figure(1) 
            subplot(6,1,1) 
            plot(i,M1EP1) 
            title('Marker 1 EP 1') 
            %xlabel('Time') 
            ylabel('Displacement') 
            subplot(6,1,2) 
            plot(i,M1EP2) 
            title('Marker 1 EP 2') 
            %xlabel('Time') 
            ylabel('Displacement') 
            subplot(6,1,3) 
            plot(i,M1EP3) 
            title('Marker 1 EP 3') 
            %xlabel('Time') 
            ylabel('Displacement') 
            subplot(6,1,4) 
            plot(i,M4EP1) 
            title('Marker 4 EP 1') 
            %xlabel('Time') 
            ylabel('Displacement') 
            subplot(6,1,5) 
            plot(i,M4EP2) 
            title('Marker 4 EP 2') 
            %xlabel('Time') 
            ylabel('Displacement') 
            subplot(6,1,6) 
            plot(i,M4EP3) 
            title('Marker 4 EP 3') 
            %xlabel('Time') 
            ylabel('Displacement') 
            hold on 
             
            %DELETE down to crash 
Td=30; 
%Td=EAtime; 
%x=stringofM1EA1; 
x=M1EA2; 
%x=stringofM1EA3; 
%x=stringofM1EP1; 
%x=stringofM1EP2; 

 99



%x=stringofM1EP3; 
  
  
M=length(x); 
close all 
clear X 
for i=1:M-1000 
    X(i,1:3)=[x(i),x(i+Td),x(i+2*Td)]; 
end 
  
% figure(10) 
% plot(1:length(X(:,1)),X(1:length(X(:,1)),1)) 
% title('Trunk Flexion Angle vs Time') 
% xlabel('time') 
% ylabel('Degrees') 
  
figure(12) 
plot(X(:,1),X(:,2)) 
grid on 
%zlim([80 140]) 
%ylim([80 140]) 
%xlim([80 140]) 
% title('Time Delayed State Space') 
% xlabel('X(t)') 
% ylabel('X(t+Td)') 
%zlabel('X(t+2Td)') 
  
  
figure(11) 
plot3(X(:,1),X(:,2),X(:,3)) 
grid on 
%zlim([80 140]) 
%ylim([80 140]) 
%xlim([80 140]) 
% title('Time Delayed State Space') 
% xlabel('X(t)') 
% ylabel('X(t+Td)') 
% zlabel('X(t+2Td)') 
            crash 
             
             
            %NOW PULL OUT THE 15 CYCLES AND SPLINE POINTS BETWEEN THEM 
             
            disp('pull first and last peak from subplot 3') 
            if peaksforsplining==3 
                TOH=1;% formerly an option % input('Counting peaks (1) or valleys? (2):  '); 
                %start pulling out peaks and splining in between them 
                for n=1:2        
                    [X,Y]=ginput(2); 
                    [uselesspeak,I]=max(M1EP3(round(X(1)):round(X(2))));; 
                                     
                    hold on 
        
                    if n==1 
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                        subplot(6,1,3) 
                        plot(I+round(X(1))-1,uselesspeak,'rX') 
                        timeofpeaks(n+1)=[I+round(X(1))-1]; 
                        uselesspeaks(n)=uselesspeak; 
                        for j=1:numberofcycles-1 
                            plot(timeofpeaks(n+1)+averagespacer*j,uselesspeaks(1),'rX') 
                        end 
                    elseif n==2 
                        subplot(6,1,3) 
                        plot(I+round(X(1))-1,uselesspeak,'bO') 
                        timeofpeaks(n+1)=[I+round(X(1))-1]; 
                        uselesspeaks(n)=uselesspeak; 
                    end 
  
                end 
                    
                 
%                 
%                     hold on 
%             subplot(6,1,3) 
%             plot(i,M1EP3) 
%             title('Marker 1 EP 3') 
%             xlabel('Time') 
%             ylabel('Displacement') 
             
            elseif peaksforsplining==2 
            disp('pull first and last peak from subplot 5')                 
                TOH=1;% formerly an option % input('Counting peaks (1) or valleys? (2):  '); 
                 
                %start pulling out peaks and splining in between them 
                 
                for n=1:2        
                    [X,Y]=ginput(2); 
                    [uselesspeak,I]=max(M4EP2(round(X(1)):round(X(2))));; 
                                     
                    hold on 
        
                    if n==1 
                        subplot(6,1,5) 
                        plot(I+round(X(1))-1,uselesspeak,'rX') 
                        timeofpeaks(n+1)=[I+round(X(1))-1]; 
                        uselesspeaks(n)=uselesspeak; 
                        for j=1:numberofcycles-1 
                            plot(timeofpeaks(n+1)+averagespacer*j,uselesspeaks(1),'rX') 
                        end 
                    elseif n==2 
                        subplot(6,1,5) 
                        plot(I+round(X(1))-1,uselesspeak,'bO') 
                        timeofpeaks(n+1)=[I+round(X(1))-1]; 
                        uselesspeaks(n)=uselesspeak; 
                    end 
  
                end 
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%                 subplot(6,1,5) 
%                 plot(i,M4EP2) 
%                 title('Marker 4 EP 2') 
%                 %xlabel('Time') 
%                 ylabel('Displacement') 
            else 
            end             
             
             
            lookalright=input('Does this look alright? (2 for no, anything for yes):  '); 
             
            if lookalright==2 
                %rerun the ginput stuff with manual points 
                if peaksforsplining==3 
                    hold off 
                    figure(1) 
                    subplot(6,1,3) 
                    plot(i,M1EP3) 
                    hold on 
                    display('grab one peak in subplot 3') 
                    TOH=1;% formerly an option % input('Counting peaks (1) or valleys? (2):  '); 
                     
                    %start pulling out peaks and splining in between them 
                    figure(1) 
                    for n=1:numberofcycles+1 
                        [X,Y]=ginput(2); 
                        if TOH==1 
                            [uselesspeak,I]=max(M1EP3(round(X(1)):round(X(2)))); 
                        else 
                            [uselesspeak,I]=min(M1EP3(round(X(1)):round(X(2))));     
                        end   
                        hold on 
                        subplot(6,1,3) 
                        plot(I+round(X(1))-1,uselesspeak,'rX') 
                        timeofpeaks(n+1)=[I+round(X(1))-1]; 
                        uselesspeaks(n)=uselesspeak; 
                    end 
                elseif peaksforsplining==2 
                    hold off 
                    figure(1) 
                    subplot(6,1,5) 
                    plot(i,M4EP2) 
                    hold on 
                    display('grab one peak in subplot 5') 
                    TOH=1;% formerly an option % input('Counting peaks (1) or valleys? (2):  '); 
                     
                    %start pulling out peaks and splining in between them 
                    figure(1) 
                    for n=1:numberofcycles+1 
                        [X,Y]=ginput(2); 
                        if TOH==1 
                            [uselesspeak,I]=max(M4EP2(round(X(1)):round(X(2)))); 
                        else 
                            [uselesspeak,I]=min(M4EP2(round(X(1)):round(X(2))));     
                        end   
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                        hold on 
                        subplot(6,1,5) 
                        plot(I+round(X(1))-1,uselesspeak,'rX') 
                        timeofpeaks(n+1)=[I+round(X(1))-1]; 
                        uselesspeaks(n)=uselesspeak; 
                    end 
                else 
                end 
            end 
             
            %spliner function 
             
            stringofM1EA1=splinerfunction(M1EA1,t,numberofcycles,timeofpeaks,resampledcyclelength); 
            stringofM1EA2=splinerfunction(M1EA2,t,numberofcycles,timeofpeaks,resampledcyclelength); 
            stringofM1EA3=splinerfunction(M1EA3,t,numberofcycles,timeofpeaks,resampledcyclelength); 
             
            stringofM1EP1=splinerfunction(M1EP1,t,numberofcycles,timeofpeaks,resampledcyclelength); 
            stringofM1EP2=splinerfunction(M1EP2,t,numberofcycles,timeofpeaks,resampledcyclelength); 
            stringofM1EP3=splinerfunction(M1EP3,t,numberofcycles,timeofpeaks,resampledcyclelength); 
             
            stringofM4EP1=splinerfunction(M4EP1,t,numberofcycles,timeofpeaks,resampledcyclelength); 
            stringofM4EP2=splinerfunction(M4EP2,t,numberofcycles,timeofpeaks,resampledcyclelength); 
            stringofM4EP3=splinerfunction(M4EP3,t,numberofcycles,timeofpeaks,resampledcyclelength); 
             
            stringofM4EA1=splinerfunction(M4EA1,t,numberofcycles,timeofpeaks,resampledcyclelength); 
            stringofM4EA2=splinerfunction(M4EA2,t,numberofcycles,timeofpeaks,resampledcyclelength); 
            stringofM4EA3=splinerfunction(M4EA3,t,numberofcycles,timeofpeaks,resampledcyclelength); 
             
            stringofM1EPC=splinerfunction(M1EPC,t,numberofcycles,timeofpeaks,resampledcyclelength); 
            stringofM1EAC=splinerfunction(M1EAC,t,numberofcycles,timeofpeaks,resampledcyclelength); 
             
            stringofM1EAU=splinerfunction(M1EAU,t,numberofcycles,timeofpeaks,resampledcyclelength); 
%             for n=1:numberofcycles 
%                 averagetime(n)=timeofpeaks(n+2)-timeofpeaks(n+1);     
%             end 
             
            averagecycletime=(timeofpeaks(3)-timeofpeaks(2))/numberofcycles; 
%sum(averagetime)/(numberofcycles) 
             
             
            %%% 
            %%% Now save these to their own text files         
             
             
             
             
            newfilenameM1EP1=['C:\Documents and 
Settings\scenglan\Desktop\rosenstein_program_back_stability\' nametosave 'M1EP1.txt']; 
            newfilenameM1EP2=['C:\Documents and 
Settings\scenglan\Desktop\rosenstein_program_back_stability\' nametosave 'M1EP2.txt']; 
            newfilenameM1EP3=['C:\Documents and 
Settings\scenglan\Desktop\rosenstein_program_back_stability\' nametosave 'M1EP3.txt']; 
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            newfilenameM1EA1=['C:\Documents and 
Settings\scenglan\Desktop\rosenstein_program_back_stability\' nametosave 'M1EA1.txt']; 
            newfilenameM1EA2=['C:\Documents and 
Settings\scenglan\Desktop\rosenstein_program_back_stability\' nametosave 'M1EA2.txt']; 
            newfilenameM1EA3=['C:\Documents and 
Settings\scenglan\Desktop\rosenstein_program_back_stability\' nametosave 'M1EA3.txt']; 
             
            newfilenameM4EP1=['C:\Documents and 
Settings\scenglan\Desktop\rosenstein_program_back_stability\' nametosave 'M4EP1.txt']; 
            newfilenameM4EP2=['C:\Documents and 
Settings\scenglan\Desktop\rosenstein_program_back_stability\' nametosave 'M4EP2.txt']; 
            newfilenameM4EP3=['C:\Documents and 
Settings\scenglan\Desktop\rosenstein_program_back_stability\' nametosave 'M4EP3.txt']; 
             
            newfilenameM4EA1=['C:\Documents and 
Settings\scenglan\Desktop\rosenstein_program_back_stability\' nametosave 'M4EA1.txt']; 
            newfilenameM4EA2=['C:\Documents and 
Settings\scenglan\Desktop\rosenstein_program_back_stability\' nametosave 'M4EA2.txt']; 
            newfilenameM4EA3=['C:\Documents and 
Settings\scenglan\Desktop\rosenstein_program_back_stability\' nametosave 'M4EA3.txt']; 
             
            newfilenameM1EPC=['C:\Documents and 
Settings\scenglan\Desktop\rosenstein_program_back_stability\' nametosave 'M1EPC.txt']; 
            newfilenameM1EAC=['C:\Documents and 
Settings\scenglan\Desktop\rosenstein_program_back_stability\' nametosave 'M1EAC.txt']; 
             
            newfilenameM1EAU=['C:\Documents and 
Settings\scenglan\Desktop\rosenstein_program_back_stability\' nametosave 'M1EAU.txt']; 
             
            save(newfilenameM1EP1,'stringofM1EP1','-ascii','-tabs','-double') 
            save(newfilenameM1EP2,'stringofM1EP2','-ascii','-tabs','-double') 
            save(newfilenameM1EP3,'stringofM1EP3','-ascii','-tabs','-double') 
             
            save(newfilenameM1EA1,'stringofM1EA1','-ascii','-tabs','-double') 
            save(newfilenameM1EA2,'stringofM1EA2','-ascii','-tabs','-double') 
            save(newfilenameM1EA3,'stringofM1EA3','-ascii','-tabs','-double') 
             
            save(newfilenameM4EP1,'stringofM4EP1','-ascii','-tabs','-double') 
            save(newfilenameM4EP2,'stringofM4EP2','-ascii','-tabs','-double') 
            save(newfilenameM4EP3,'stringofM4EP3','-ascii','-tabs','-double') 
             
            save(newfilenameM4EA1,'stringofM4EA1','-ascii','-tabs','-double') 
            save(newfilenameM4EA2,'stringofM4EA2','-ascii','-tabs','-double') 
            save(newfilenameM4EA3,'stringofM4EA3','-ascii','-tabs','-double') 
             
            save(newfilenameM1EPC,'stringofM1EPC','-ascii','-tabs','-double') 
            save(newfilenameM1EAC,'stringofM1EAC','-ascii','-tabs','-double') 
             
            save(newfilenameM1EAU,'stringofM1EAU','-ascii','-tabs','-double') 
             
             
            newfilenameM1EP1=[nametosave 'M1EP1.txt']; 
            newfilenameM1EP2=[nametosave 'M1EP2.txt']; 
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            newfilenameM1EP3=[nametosave 'M1EP3.txt']; 
             
            newfilenameM1EA1=[nametosave 'M1EA1.txt']; 
            newfilenameM1EA2=[nametosave 'M1EA2.txt']; 
            newfilenameM1EA3=[nametosave 'M1EA3.txt']; 
             
            newfilenameM4EP1=[nametosave 'M4EP1.txt']; 
            newfilenameM4EP2=[nametosave 'M4EP2.txt']; 
            newfilenameM4EP3=[nametosave 'M4EP3.txt']; 
             
            newfilenameM4EA1=[nametosave 'M4EA1.txt']; 
            newfilenameM4EA2=[nametosave 'M4EA2.txt']; 
            newfilenameM4EA3=[nametosave 'M4EA3.txt']; 
  
            newfilenameM1EPC=[nametosave 'M1EPC.txt']; 
            newfilenameM1EAC=[nametosave 'M1EAC.txt']; 
             
            newfilenameM1EAU=[nametosave 'M1EAU.txt']; 
  
            %PARAMETERS FOR THIS DEFINED AT TOP 
            %m defined at top 
            w=0.7*averagecycletime; 
             
            m=5; 
            line1=sprintf([newfilenameM1EP1 ' 1 1 0 ',int2str(m),' ',int2str(EPtime),' ',int2str(w),' 
',int2str(divergencetime)]); 
            line2=sprintf([newfilenameM1EP2 ' 1 1 0 ',int2str(m),' ',int2str(EPtime),' ',int2str(w),' 
',int2str(divergencetime)]); 
            line3=sprintf([newfilenameM1EP3 ' 1 1 0 ',int2str(m),' ',int2str(EPtime),' ',int2str(w),' 
',int2str(divergencetime)]); 
            line4=sprintf([newfilenameM1EA1 ' 1 1 0 ',int2str(m),' ',int2str(EAtime),' ',int2str(w),' 
',int2str(divergencetime)]); 
            line5=sprintf([newfilenameM1EA2 ' 1 1 0 ',int2str(m),' ',int2str(EAtime),' ',int2str(w),' 
',int2str(divergencetime)]); 
            line6=sprintf([newfilenameM1EA3 ' 1 1 0 ',int2str(m),' ',int2str(EAtime),' ',int2str(w),' 
',int2str(divergencetime)]); 
            line7=sprintf([newfilenameM4EP1 ' 1 1 0 ',int2str(m),' ',int2str(EPtime),' ',int2str(w),' 
',int2str(divergencetime)]); 
            line8=sprintf([newfilenameM4EP2 ' 1 1 0 ',int2str(m),' ',int2str(EPtime),' ',int2str(w),' 
',int2str(divergencetime)]); 
            line9=sprintf([newfilenameM4EP3 ' 1 1 0 ',int2str(m),' ',int2str(EPtime),' ',int2str(w),' 
',int2str(divergencetime)]); 
            line10=sprintf([newfilenameM4EA1 ' 1 1 0 ',int2str(m),' ',int2str(EAtime),' ',int2str(w),' 
',int2str(divergencetime)]); 
            line11=sprintf([newfilenameM4EA2 ' 1 1 0 ',int2str(m),' ',int2str(EAtime),' ',int2str(w),' 
',int2str(divergencetime)]); 
            line12=sprintf([newfilenameM4EA3 ' 1 1 0 ',int2str(m),' ',int2str(EAtime),' ',int2str(w),' 
',int2str(divergencetime)]); 
            line13=sprintf([newfilenameM1EPC ' 1 1 0 ',int2str(m),' ',int2str(EAtime),' ',int2str(w),' 
',int2str(divergencetime)]); 
            line14=sprintf([newfilenameM1EAC ' 1 1 0 ',int2str(m),' ',int2str(EAtime),' ',int2str(w),' 
',int2str(divergencetime)]); 
            line15=sprintf([newfilenameM1EAU ' 1 1 0 ',int2str(m),' ',int2str(EAtime),' ',int2str(w),' 
',int2str(divergencetime)]); 
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rosensteinfile=[line1,'\n',line2,'\n',line3,'\n',line4,'\n',line5,'\n',line6,'\n',line7,'\n',line8,'\n',line9,'\n',line10,'\n',li
ne11,'\n',line12,'\n',line13,'\n',line14,'\n',line15,'\n']; 
            file = fopen('C:\Documents and 
Settings\scenglan\Desktop\rosenstein_program_back_stability\grouprun.txt','w+'); 
            fprintf(file,rosensteinfile); 
            fclose(file); 
             
            line1 
            %input('pressing enter will run Rosensteins program') 
            dos('C:\Documents and Settings\scenglan\Desktop\rosenstein_program_back_stability\l1d2.exe') 
             
             
            close all 
             
            data = dlmread(['C:\Documents and 
Settings\scenglan\Desktop\rosenstein_program_back_stability\results.l1'],'\t',0,0); 
            time=1:length(data); 
             
            time=transpose(time)/averagecycletime; 
            %WILL NEED ONE OF THESE SECTIONS FOR EACH MEASUREMENT ANALYZED 
            L1M1EP1=2; 
            L1M1EP2=3; 
            L1M1EP3=4; 
             
            L1M1EA1=5; 
            L1M1EA2=6; 
            L1M1EA3=7; 
             
            L1M4EP1=8; 
            L1M4EP2=9; 
            L1M4EP3=10; 
             
            L1M4EA1=11; 
            L1M4EA2=12; 
            L1M4EA3=13; 
             
            L1M1EPC=14; 
            L1M1EAC=15; 
             
            L1M1EAU=16; 
             
            %figure(10) 
            %plot(time,data(:,L1M1EP1)) 
            title('L1M1EP1') 
            xlabel('cycles') 
            ylabel('<ln(d)>') 
            Ymax=max(data(:,L1M1EP1)); 
            Ymin=min(data(:,L1M1EP1)); 
             
             
            timeminusone=abs(time-1); 
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            timeminusfour=abs(time-4); 
            timeminusten=abs(time-10); 
             
            [subtractone,m]=min(timeminusone); 
            [subtractfour,n]=min(timeminusfour); 
            [subtractten,p]=min(timeminusten); 
             
            LstM1EP1=polyfit(time(1:m),data(1:length(time(1:m)),L1M1EP1),1); 
            %LmtM1EP1=polyfit(time(m:n),data(m:n,L1M1EP1),1); 
            %LltM1EP1=polyfit(time(n:p),data(n:p,L1M1EP1),1); 
            hold on 
            %plot(time(1:m),LstM1EP1(1)*time(1:m)+LstM1EP1(2),'r') 
            %plot(time(m:n),LmtM1EP1(1)*time(m:n)+LmtRA(2),'r') 
            %plot(time(n:p),LltM1EP1(1)*time(n:p)+LltRA(2),'r') 
            axis([0,4,Ymin,Ymax]) 
            ShorttermLyapunovexponentM1EP1=LstM1EP1(1); 
            %MediumtermLyapunovexponentM1EP1=LmtM1EP1(1); 
            %LongtermLyapunovexponentM1EP1=LltM1EP1(1); 
             
             
            %figure(11) 
            %plot(time,data(:,L1M1EP2)) 
            title('L1M1EP2') 
            xlabel('cycles') 
            ylabel('<ln(d)>') 
            Ymax=max(data(:,L1M1EP2)); 
            Ymin=min(data(:,L1M1EP2)); 
             
             
            timeminusone=abs(time-1); 
            %timeminusfour=abs(time-4); 
            %timeminusten=abs(time-10); 
             
            [subtractone,m]=min(timeminusone); 
            [subtractfour,n]=min(timeminusfour); 
            [subtractten,p]=min(timeminusten); 
             
            LstM1EP2=polyfit(time(1:m),data(1:length(time(1:m)),L1M1EP2),1); 
            %LmtM1EP2=polyfit(time(m:n),data(m:n,L1M1EP2),1); 
            %LltM1EP2=polyfit(time(n:p),data(n:p,L1M1EP2),1); 
            hold on 
            %plot(time(1:m),LstM1EP2(1)*time(1:m)+LstM1EP2(2),'r') 
            %plot(time(m:n),LmtM1EP2(1)*time(m:n)+LmtRA(2),'r') 
            %plot(time(n:p),LltM1EP2(1)*time(n:p)+LltRA(2),'r') 
            axis([0,4,Ymin,Ymax]) 
            ShorttermLyapunovexponentM1EP2=LstM1EP2(1); 
            %MediumtermLyapunovexponentM1EP2=LmtM1EP2(1); 
            %LongtermLyapunovexponentM1EP2=LltM1EP2(1); 
             
             
             
            %figure(12) 
            %plot(time,data(:,L1M1EP3)) 
            title('L1M1EP3') 
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            xlabel('cycles') 
            ylabel('<ln(d)>') 
            Ymax=max(data(:,L1M1EP3)); 
            Ymin=min(data(:,L1M1EP3)); 
             
            timeminusone=abs(time-1); 
            timeminusfour=abs(time-4); 
            timeminusten=abs(time-10); 
             
            [subtractone,m]=min(timeminusone); 
            [subtractfour,n]=min(timeminusfour); 
            [subtractten,p]=min(timeminusten); 
             
            LstM1EP3=polyfit(time(1:m),data(1:length(time(1:m)),L1M1EP3),1); 
            %LmtM1EP3=polyfit(time(m:n),data(m:n,L1M1EP3),1); 
            %LltM1EP3=polyfit(time(n:p),data(n:p,L1M1EP3),1); 
            hold on 
            %plot(time(1:m),LstM1EP3(1)*time(1:m)+LstM1EP3(2),'r') 
            %plot(time(m:n),LmtM1EP2(1)*time(m:n)+LmtRA(2),'r') 
            %plot(time(n:p),LltM1EP2(1)*time(n:p)+LltRA(2),'r') 
            axis([0,4,Ymin,Ymax]) 
            ShorttermLyapunovexponentM1EP3=LstM1EP3(1); 
            %MediumtermLyapunovexponentM1EP3=LmtM1EP3(1); 
            %LongtermLyapunovexponentM1EP3=LltM1EP3(1); 
             
             
             
             
             
            %figure(13) 
            %plot(time,data(:,L1M1EA1)) 
            title('L1M1EA1') 
            xlabel('cycles') 
            ylabel('<ln(d)>') 
            Ymax=max(data(:,L1M1EA1)); 
            Ymin=min(data(:,L1M1EA1)); 
             
            timeminusone=abs(time-1); 
            timeminusfour=abs(time-4); 
            timeminusten=abs(time-10); 
             
            [subtractone,m]=min(timeminusone); 
            [subtractfour,n]=min(timeminusfour); 
            [subtractten,p]=min(timeminusten); 
             
            LstM1EA1=polyfit(time(1:m),data(1:length(time(1:m)),L1M1EA1),1); 
            %LmtM1EA1=polyfit(time(m:n),data(m:n,L1M1EA1),1); 
            %LltM1EA1=polyfit(time(n:p),data(n:p,L1M1EA1),1); 
            hold on 
            %plot(time(1:m),LstM1EA1(1)*time(1:m)+LstM1EA1(2),'r') 
            %plot(time(m:n),LmtM1EP1(1)*time(m:n)+LmtRA(2),'r') 
            %plot(time(n:p),LltM1EP1(1)*time(n:p)+LltRA(2),'r') 
            axis([0,4,Ymin,Ymax]) 
            ShorttermLyapunovexponentM1EA1=LstM1EA1(1); 
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            %MediumtermLyapunovexponentM1EA1=LmtM1EA1(1); 
            %LongtermLyapunovexponentM1EA1=LltM1EA1(1); 
             
            %figure(14) 
            %plot(time,data(:,L1M1EA2)) 
            title('L1M1EA2') 
            xlabel('cycles') 
            ylabel('<ln(d)>') 
            Ymax=max(data(:,L1M1EA2)); 
            Ymin=min(data(:,L1M1EA2)); 
             
            timeminusone=abs(time-1); 
            timeminusfour=abs(time-4); 
            timeminusten=abs(time-10); 
             
            [subtractone,m]=min(timeminusone); 
            [subtractfour,n]=min(timeminusfour); 
            [subtractten,p]=min(timeminusten); 
             
            LstM1EA2=polyfit(time(1:m),data(1:length(time(1:m)),L1M1EA2),1); 
            %LmtM1EA2=polyfit(time(m:n),data(m:n,L1M1EA2),1); 
            %LltM1EA2=polyfit(time(n:p),data(n:p,L1M1EA2),1); 
            hold on 
            %plot(time(1:m),LstM1EA2(1)*time(1:m)+LstM1EA2(2),'r') 
            %plot(time(m:n),LmtM1EP2(1)*time(m:n)+LmtRA(2),'r') 
            %plot(time(n:p),LltM1EP2(1)*time(n:p)+LltRA(2),'r') 
            axis([0,4,Ymin,Ymax]) 
            ShorttermLyapunovexponentM1EA2=LstM1EA2(1); 
            %MediumtermLyapunovexponentM1EA2=LmtM1EA2(1); 
            %LongtermLyapunovexponentM1EA2=LltM1EA2(1); 
             
             
            %figure(15) 
            %plot(time,data(:,L1M1EA3)) 
            title('L1M1EA3') 
            xlabel('cycles') 
            ylabel('<ln(d)>') 
            Ymax=max(data(:,L1M1EA3)); 
            Ymin=min(data(:,L1M1EA3)); 
            timeminusone=abs(time-1); 
            timeminusfour=abs(time-4); 
            timeminusten=abs(time-10); 
             
            [subtractone,m]=min(timeminusone); 
            [subtractfour,n]=min(timeminusfour); 
            [subtractten,p]=min(timeminusten); 
             
            LstM1EA3=polyfit(time(1:m),data(1:length(time(1:m)),L1M1EA3),1); 
            %LmtM1EA3=polyfit(time(m:n),data(m:n,L1M1EA3),1); 
            %LltM1EA3=polyfit(time(n:p),data(n:p,L1M1EA3),1); 
            hold on 
            %plot(time(1:m),LstM1EA3(1)*time(1:m)+LstM1EA3(2),'r') 
            %plot(time(m:n),LmtM1EA3(1)*time(m:n)+LmtM1EA3(2),'r') 
            %plot(time(n:p),LltM1EA3(1)*time(n:p)+LltM1EA3(2),'r') 
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            axis([0,4,Ymin,Ymax]) 
            ShorttermLyapunovexponentM1EA3=LstM1EA3(1); 
            %MediumtermLyapunovexponentM1EA3=LmtM1EA3(1); 
            %LongtermLyapunovexponentM1EA3=LltM1EA3(1); 
             
            %plot of all 6 to check quickly 
             
            figure(20) 
            subplot(3,2,1) 
            plot(time,data(:,L1M1EP1));hold on 
            plot(time(1:m),LstM1EP1(1)*time(1:m)+LstM1EP1(2),'r') 
            title('LstM1EP1') 
            xlabel('Time') 
            ylabel('L1') 
            axis([0,2.5,min(data(:,L1M1EP1)),max(data(:,L1M1EP1))]); 
             
            subplot(3,2,3) 
            plot(time,data(:,L1M1EP2));hold on 
            plot(time(1:m),LstM1EP2(1)*time(1:m)+LstM1EP2(2),'r') 
            title('LstM1EP2') 
            xlabel('Time') 
            ylabel('L1') 
            axis([0,2.5,min(data(:,L1M1EP2)),max(data(:,L1M1EP2))]); 
             
            subplot(3,2,5) 
            plot(time,data(:,L1M1EP3));hold on 
            plot(time(1:m),LstM1EP3(1)*time(1:m)+LstM1EP3(2),'r') 
            title('LstM1EP3') 
            xlabel('Time') 
            ylabel('L1') 
            axis([0,2.5,min(data(:,L1M1EP3)),max(data(:,L1M1EP3))]); 
             
            subplot(3,2,2) 
            plot(time,data(:,L1M1EA1));hold on 
            plot(time(1:m),LstM1EA1(1)*time(1:m)+LstM1EA1(2),'r') 
            title('LstM1EA1') 
            xlabel('Time') 
            ylabel('L1') 
            axis([0,2.5,min(data(:,L1M1EA1)),max(data(:,L1M1EA1))]); 
             
            subplot(3,2,4) 
            plot(time,data(:,L1M1EA2));hold on 
            plot(time(1:m),LstM1EA2(1)*time(1:m)+LstM1EA2(2),'r') 
            title('LstM1EA2') 
            xlabel('Time') 
            ylabel('L1') 
            axis([0,2.5,min(data(:,L1M1EA2)),max(data(:,L1M1EA2))]); 
             
            subplot(3,2,6) 
            plot(time,data(:,L1M1EA3));hold on 
            plot(time(1:m),LstM1EA3(1)*time(1:m)+LstM1EA3(2),'r') 
            title('LstM1EA3') 
            xlabel('Time') 
            ylabel('L1') 
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            axis([0,2.5,min(data(:,L1M1EA3)),max(data(:,L1M1EA3))]); 
             
             
            %MARKER 4 
             
             
            %M4EP1 
            LstM4EP1=polyfit(time(1:m),data(1:length(time(1:m)),L1M4EP1),1); 
            ShorttermLyapunovexponentM4EP1=LstM4EP1(1); 
            YmaxM4EP1=max(data(:,L1M4EP2)); 
            YminM4EP1=min(data(:,L1M4EP2)); 
             
            %M4EP2 
            YmaxM4EP2=max(data(:,L1M4EP2)); 
            YminM4EP2=min(data(:,L1M4EP2)); 
            LstM4EP2=polyfit(time(1:m),data(1:length(time(1:m)),L1M4EP2),1); 
            % hold on 
            % plot(time(1:m),LstM4EP2(1)*time(1:m)+LstM4EP2(2),'r') 
            % axis([0,4,Ymin,Ymax]) 
            ShorttermLyapunovexponentM4EP2=LstM4EP2(1); 
             
            %M4EP3 
            YmaxM4EP3=max(data(:,L1M4EP3)); 
            YminM4EP3=min(data(:,L1M4EP3)); 
            LstM4EP3=polyfit(time(1:m),data(1:length(time(1:m)),L1M4EP3),1); 
            % hold on 
            % plot(time(1:m),LstM4EP3(1)*time(1:m)+LstM4EP3(2),'r') 
            % axis([0,4,Ymin,Ymax]) 
            ShorttermLyapunovexponentM4EP3=LstM4EP3(1); 
             
            %M4EA1 
            YmaxM4EA1=max(data(:,L1M4EA1)); 
            YminM4EA1=min(data(:,L1M4EA1)); 
            LstM4EA1=polyfit(time(1:m),data(1:length(time(1:m)),L1M4EA1),1); 
            % hold on 
            % plot(time(1:m),LstM4EA1(1)*time(1:m)+LstM4EA1(2),'r') 
            % axis([0,4,Ymin,Ymax]) 
            ShorttermLyapunovexponentM4EA1=LstM4EA1(1); 
             
            %M4EA2 
            YmaxM4EA2=max(data(:,L1M4EA2)); 
            YminM4EA2=min(data(:,L1M4EA2)); 
            LstM4EA2=polyfit(time(1:m),data(1:length(time(1:m)),L1M4EA2),1); 
            % hold on 
            % plot(time(1:m),LstM4EA2(1)*time(1:m)+LstM4EA2(2),'r') 
            % axis([0,4,Ymin,Ymax]) 
            ShorttermLyapunovexponentM4EA2=LstM4EA2(1); 
             
            %M4EA3 
            YmaxM4EA3=max(data(:,L1M4EA3)); 
            YminM4EA3=min(data(:,L1M4EA3)); 
            LstM4EA3=polyfit(time(1:m),data(1:length(time(1:m)),L1M4EA3),1); 
            % hold on 
            % plot(time(1:m),LstM4EA3(1)*time(1:m)+LstM4EA3(2),'r') 
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            % axis([0,4,Ymin,Ymax]) 
            ShorttermLyapunovexponentM4EA3=LstM4EA3(1); 
             
            figure(21) 
            subplot(3,2,1) 
            plot(time,data(:,L1M4EP1));hold on 
            plot(time(1:m),LstM4EP1(1)*time(1:m)+LstM4EP1(2),'r') 
            title('LstM4EP1') 
            xlabel('Time') 
            ylabel('L1') 
            axis([0,2.5,min(data(:,L1M4EP1)),max(data(:,L1M4EP1))]); 
             
            subplot(3,2,3) 
            plot(time,data(:,L1M4EP2));hold on 
            plot(time(1:m),LstM4EP2(1)*time(1:m)+LstM4EP2(2),'r') 
            title('LstM1EP2') 
            xlabel('Time') 
            ylabel('L1') 
            axis([0,2.5,min(data(:,L1M4EP2)),max(data(:,L1M4EP2))]); 
             
            subplot(3,2,5) 
            plot(time,data(:,L1M4EP3));hold on 
            plot(time(1:m),LstM4EP3(1)*time(1:m)+LstM4EP3(2),'r') 
            title('LstM4EP3') 
            xlabel('Time') 
            ylabel('L1') 
            axis([0,2.5,min(data(:,L1M4EP3)),max(data(:,L1M4EP3))]); 
             
            subplot(3,2,2) 
            plot(time,data(:,L1M4EA1));hold on 
            plot(time(1:m),LstM4EA1(1)*time(1:m)+LstM4EA1(2),'r') 
            title('LstM4EA1') 
            xlabel('Time') 
            ylabel('L1') 
            axis([0,2.5,min(data(:,L1M4EA1)),max(data(:,L1M4EA1))]); 
             
            subplot(3,2,4) 
            plot(time,data(:,L1M4EA2));hold on 
            plot(time(1:m),LstM4EA2(1)*time(1:m)+LstM4EA2(2),'r') 
            title('LstM4EA2') 
            xlabel('Time') 
            ylabel('L1') 
            axis([0,2.5,min(data(:,L1M4EA2)),max(data(:,L1M4EA2))]); 
             
            subplot(3,2,6) 
            plot(time,data(:,L1M4EA3));hold on 
            plot(time(1:m),LstM4EA3(1)*time(1:m)+LstM4EA3(2),'r') 
            title('LstM4EA3') 
            xlabel('Time') 
            ylabel('L1') 
            axis([0,2.5,min(data(:,L1M4EA3)),max(data(:,L1M4EA3))]); 
            %%%%ABOVE HERE 
                         
            LstM1EPC=polyfit(time(1:m),data(1:length(time(1:m)),L1M1EPC),1); 
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            ShorttermLyapunovexponentM1EPC=LstM1EPC(1); 
            YmaxM1EPC=max(data(:,L1M1EPC)); 
            YminM1EPC=min(data(:,L1M1EPC)); 
             
            LstM1EAC=polyfit(time(1:m),data(1:length(time(1:m)),L1M1EAC),1); 
            ShorttermLyapunovexponentM1EAC=LstM1EAC(1); 
            YmaxM1EAC=max(data(:,L1M1EAC)); 
            YminM1EAC=min(data(:,L1M1EAC)); 
             
            figure(22) 
            subplot(3,1,1) 
            plot(time,data(:,L1M1EPC));hold on 
            plot(time(1:m),LstM1EPC(1)*time(1:m)+LstM1EPC(2),'r') 
            title('LstM1EPC') 
            xlabel('Time') 
            ylabel('L1') 
            axis([0,2.5,min(data(:,L1M1EPC)),max(data(:,L1M1EPC))]); 
             
            subplot(3,1,2) 
            plot(time,data(:,L1M1EAC));hold on 
            plot(time(1:m),LstM1EAC(1)*time(1:m)+LstM1EAC(2),'r') 
            title('LstM1EAC') 
            xlabel('Time') 
            ylabel('L1') 
            axis([0,2.5,min(data(:,L1M1EAC)),max(data(:,L1M1EAC))]); 
             
  
            Ymax=max(data(:,L1M1EAU)); 
            Ymin=min(data(:,L1M1EAU)); 
             
            timeminusone=abs(time-1); 
            timeminusfour=abs(time-4); 
            timeminusten=abs(time-10); 
             
            [subtractone,m]=min(timeminusone); 
            [subtractfour,n]=min(timeminusfour); 
            [subtractten,p]=min(timeminusten); 
             
            LstM1EAU=polyfit(time(1:m),data(1:length(time(1:m)),L1M1EAU),1); 
            %LmtM1EA2=polyfit(time(m:n),data(m:n,L1M1EA2),1); 
            %LltM1EA2=polyfit(time(n:p),data(n:p,L1M1EA2),1); 
            %hold on 
            %plot(time(1:m),LstM1EA2(1)*time(1:m)+LstM1EA2(2),'r') 
            %plot(time(m:n),LmtM1EP2(1)*time(m:n)+LmtRA(2),'r') 
            %plot(time(n:p),LltM1EP2(1)*time(n:p)+LltRA(2),'r') 
            %axis([0,4,Ymin,Ymax]) 
            ShorttermLyapunovexponentM1EAU=LstM1EAU(1); 
             
             
             
            %The Autosaver  LOAD THE STUFF FIRST 
            averagecycletimespreadsheet=dlmread('averagecycletimespreadsheet.txt','\t',[0,0,30,9]); 
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            M1EP1LSTR300=dlmread('M1EP1LSTR300.txt','\t',[0,0,30,9]); 
            M1EP2LSTR300=dlmread('M1EP2LSTR300.txt','\t',[0,0,30,9]); 
            M1EP3LSTR300=dlmread('M1EP3LSTR300.txt','\t',[0,0,30,9]); 
             
            M1EA1LSTR300=dlmread('M1EA1LSTR300.txt','\t',[0,0,30,9]); 
            M1EA2LSTR300=dlmread('M1EA2LSTR300.txt','\t',[0,0,30,9]); 
            M1EA3LSTR300=dlmread('M1EA3LSTR300.txt','\t',[0,0,30,9]); 
             
            M4EP1LSTR300=dlmread('M4EP1LSTR300.txt','\t',[0,0,30,9]); 
            M4EP2LSTR300=dlmread('M4EP2LSTR300.txt','\t',[0,0,30,9]); 
            M4EP3LSTR300=dlmread('M4EP3LSTR300.txt','\t',[0,0,30,9]); 
             
            M4EA1LSTR300=dlmread('M4EA1LSTR300.txt','\t',[0,0,30,9]); 
            M4EA2LSTR300=dlmread('M4EA2LSTR300.txt','\t',[0,0,30,9]); 
            M4EA3LSTR300=dlmread('M4EA3LSTR300.txt','\t',[0,0,30,9]); 
             
            M1EPCLSTR300=dlmread('M1EPCLSTR300.txt','\t',[0,0,30,9]); 
            M1EACLSTR300=dlmread('M1EACLSTR300.txt','\t',[0,0,30,9]); 
             
            M1EAULSTR300=dlmread('M1EAULSTR300.txt','\t',[0,0,30,9]); 
            %now update the spreadsheets 
             
            averagecycletimespreadsheet(row,column)=averagecycletime; 
             
            M1EP1LSTR300(row,column)=LstM1EP1(1); 
            M1EP2LSTR300(row,column)=LstM1EP2(1); 
            M1EP3LSTR300(row,column)=LstM1EP3(1); 
             
            M1EA1LSTR300(row,column)=LstM1EA1(1); 
            M1EA2LSTR300(row,column)=LstM1EA2(1) 
            M1EA3LSTR300(row,column)=LstM1EA3(1); 
             
            M4EP1LSTR300(row,column)=LstM4EP1(1); 
            M4EP2LSTR300(row,column)=LstM4EP2(1); 
            M4EP3LSTR300(row,column)=LstM4EP3(1); 
             
            M4EA1LSTR300(row,column)=LstM4EA1(1); 
            M4EA2LSTR300(row,column)=LstM4EA2(1); 
            M4EA3LSTR300(row,column)=LstM4EA3(1); 
             
            M1EPCLSTR300(row,column)=LstM1EPC(1); 
            M1EACLSTR300(row,column)=LstM1EAC(1); 
             
            M1EAULSTR300(row,column)=LstM1EAU(1) 
            %and save them 
             
            save averagecycletimespreadsheet.txt averagecycletimespreadsheet -ascii -double -tabs 
             
            save M1EP1LSTR300.txt M1EP1LSTR300 -ascii -double -tabs 
            save M1EP2LSTR300.txt M1EP2LSTR300 -ascii -double -tabs 
            save M1EP3LSTR300.txt M1EP3LSTR300 -ascii -double -tabs 
             
            save M1EA1LSTR300.txt M1EA1LSTR300 -ascii -double -tabs 
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            save M1EA2LSTR300.txt M1EA2LSTR300 -ascii -double -tabs 
            save M1EA3LSTR300.txt M1EA3LSTR300 -ascii -double -tabs 
             
            save M4EP1LSTR300.txt M4EP1LSTR300 -ascii -double -tabs 
            save M4EP2LSTR300.txt M4EP2LSTR300 -ascii -double -tabs 
            save M4EP3LSTR300.txt M4EP3LSTR300 -ascii -double -tabs 
             
            save M4EA1LSTR300.txt M4EA1LSTR300 -ascii -double -tabs 
            save M4EA2LSTR300.txt M4EA2LSTR300 -ascii -double -tabs 
            save M4EA3LSTR300.txt M4EA3LSTR300 -ascii -double -tabs 
             
            save M1EPCLSTR300.txt M1EPCLSTR300 -ascii -double -tabs 
            save M1EACLSTR300.txt M1EACLSTR300 -ascii -double -tabs 
             
            save M1EAULSTR300.txt M1EAULSTR300 -ascii -double -tabs 
             
            nametosave 
  
  
            clear st* m1* m4* ti* new* li* data fdata rawdata M4* M1* i 
                        
            end 
         end 
    end 
  
toc 
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